Subtract using the number line:

[tex]\[ -\frac{2}{3} - \left( -1 \frac{1}{3} \right) \][/tex]

A. [tex]\(-1 \frac{2}{3}\)[/tex]

B. [tex]\(-\frac{2}{3}\)[/tex]

C. [tex]\(-\frac{1}{3}\)[/tex]

D. [tex]\(\frac{2}{3}\)[/tex]



Answer :

Let's subtract [tex]\(-\frac{2}{3} - \left(-1 \frac{1}{3}\right)\)[/tex] step-by-step.

1. Convert the Mixed Fraction to an Improper Fraction:

First, convert the mixed fraction [tex]\(-1 \frac{1}{3}\)[/tex] into an improper fraction.

[tex]\[ -1 \frac{1}{3} = -1 - \frac{1}{3} \][/tex]
To convert this, let's combine the whole number and the fractional part:

[tex]\[-1 - \frac{1}{3} = -\frac{3}{3} - \frac{1}{3} = -\frac{4}{3}\][/tex]

So, [tex]\(-1 \frac{1}{3}\)[/tex] is equivalent to [tex]\(-\frac{4}{3}\)[/tex].

2. Subtraction of Negative Fractions:

Next, we will perform the subtraction [tex]\(-\frac{2}{3} - \left(-\frac{4}{3}\right)\)[/tex].

Remember, subtracting a negative number is the same as adding its positive counterpart. Thus, this becomes:

[tex]\[ -\frac{2}{3} - \left(-\frac{4}{3}\right) = -\frac{2}{3} + \frac{4}{3} \][/tex]

3. Find a Common Denominator and Perform the Addition:

Since both fractions already have the same denominator, we can directly add the numerators:

[tex]\[ -\frac{2}{3} + \frac{4}{3} = \frac{-2 + 4}{3} = \frac{2}{3} \][/tex]

So, the result of the subtraction [tex]\(-\frac{2}{3} - \left(-1 \frac{1}{3}\right)\)[/tex] is [tex]\(\frac{2}{3}\)[/tex].

Therefore, the final answer is:

[tex]\[ \boxed{\frac{2}{3}} \][/tex]