\begin{tabular}{|c|c|c|c|c|c|}
\hline
\begin{tabular}{c}
Number \\
of \\
washers
\end{tabular} & \begin{tabular}{c}
Mass of \\
washers \\
[tex]$m_w(g)$[/tex]
\end{tabular} & \begin{tabular}{c}
Mass of \\
washers \\
[tex]$m_w(kg)$[/tex]
\end{tabular} & \begin{tabular}{c}
Acceleration \\
due to gravity \\
[tex]$a_g\left(m / s^2\right)$[/tex]
\end{tabular} & \begin{tabular}{c}
Force of \\
gravity on the \\
washers \\
[tex]$F_g\left(kg \cdot m / s^2\right)$[/tex]
\end{tabular} & \begin{tabular}{c}
Applied force \\
of washers \\
on the car \\
[tex]$F_{we}(N)$[/tex]
\end{tabular} \\
\hline 1 & 4.9 & 0.0049 & 9.8 & 0.049 & 0.049 \\
\hline 3 & 14.7 & 0.0147 & 9.8 & 0.147 & 0.147 \\
\hline
\end{tabular}

The acceleration due to gravity for any object, including 1 washer on the string, is always assumed to be
[tex] 9.8 \, m / s^2 [/tex].

The mass of 3 washers, when converted to kg, is [tex] 0.0147 \, kg [/tex].

The applied force of 3 washers will increase the applied force on the car to [tex] 0.147 \, N [/tex].



Answer :

Let's break down the solution step by step.

### Step 1: Determining the acceleration due to gravity
The acceleration due to gravity for any object, including the washers, is always assumed to be [tex]\( \boxed{10} \)[/tex] m/s².

### Step 2: Converting mass from grams to kilograms
We are given that the mass of 3 washers is 14.7 grams. To convert this mass to kilograms:
[tex]\[ \text{Mass of 3 washers in kg} = \frac{14.7 \text{ g}}{1000} = \boxed{0.0147} \text{ kg} \][/tex]

### Step 3: Calculating the applied force of the washers on the car
To find the applied force, we use the formula:
[tex]\[ F = m \times a \][/tex]

Here:
- [tex]\( m \)[/tex] is the mass of the washers in kg (which we just found to be 0.0147 kg).
- [tex]\( a \)[/tex] is the acceleration due to gravity (10 m/s²).

Thus, the applied force [tex]\( F \)[/tex] is:
[tex]\[ F = 0.0147 \text{ kg} \times 10 \text{ m/s}^2 = \boxed{0.147} \text{ N} \][/tex]

### Summary in Table
We can now fill in the missing parts of the table:

[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline \begin{tabular}{c} Number \\ of \\ washers \end{tabular} & \begin{tabular}{c} Mass of \\ washers \\ $m_w(g)$ \end{tabular} & \begin{tabular}{c} Mass of \\ washers \\ $m _w(kg)$ \end{tabular} & \begin{tabular}{c} Acceleration \\ due to gravity \\ $a _g\left(m / s ^2\right)$ \end{tabular} & \begin{tabular}{c} Force of \\ gravity on the \\ washers \\ $F _g\left(kg \cdot m / s ^2\right)$ \end{tabular} & \begin{tabular}{c} Applied force \\ of washers \\ on the car \\ $F_{w e}(N)$ \end{tabular} \\ \hline 1 & 4.9 & 0.0049 & 10 & 0.049 & 0.049 \\ \hline 3 & 14.7 & 0.0147 & 10 & 0.147 & 0.147 \\ \hline \end{tabular} \][/tex]

From the table and our calculations, we conclude:

- The acceleration due to gravity for any object, including 1 washer on the string, is always assumed to be [tex]\( \boxed{10} \)[/tex] m/s².
- The mass of 3 washers, when converted to kg, is [tex]\( \boxed{0.0147} \)[/tex] kg.
- The applied force of 3 washers will increase the applied force on the car to [tex]\( \boxed{0.147} \)[/tex] N.