5) Given the relation [tex]R=\{(x, y) \mid y=2x-5\}[/tex], complete the table:

\begin{tabular}{|c|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] & [tex]$(x, y)$[/tex] \\
\hline
-2 & & \\
\hline
-1 & & \\
\hline
0 & & \\
\hline
1 & & \\
\hline
2 & & \\
\hline
\end{tabular}



Answer :

Sure, let's analyze the relationship described by [tex]\( y = 2x - 5 \)[/tex] and complete the table step-by-step.

We will evaluate the expression [tex]\( y = 2x - 5 \)[/tex] for each given [tex]\( x \)[/tex] value.

1. For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = 2(-2) - 5 \][/tex]
[tex]\[ y = -4 - 5 = -9 \][/tex]
The pair [tex]\((x, y)\)[/tex] is [tex]\((-2, -9)\)[/tex].

2. For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 2(-1) - 5 \][/tex]
[tex]\[ y = -2 - 5 = -7 \][/tex]
The pair [tex]\((x, y)\)[/tex] is [tex]\((-1, -7)\)[/tex].

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 2(0) - 5 \][/tex]
[tex]\[ y = 0 - 5 = -5 \][/tex]
The pair [tex]\((x, y)\)[/tex] is [tex]\((0, -5)\)[/tex].

4. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 2(1) - 5 \][/tex]
[tex]\[ y = 2 - 5 = -3 \][/tex]
The pair [tex]\((x, y)\)[/tex] is [tex]\((1, -3)\)[/tex].

5. For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 2(2) - 5 \][/tex]
[tex]\[ y = 4 - 5 = -1 \][/tex]
The pair [tex]\((x, y)\)[/tex] is [tex]\((2, -1)\)[/tex].

Now we can fill in the table with our calculated values:

[tex]\[ \begin{tabular}{|c|c|c|} \hline x & y & (x, y) \\ \hline -2 & -9 & (-2, -9) \\ \hline -1 & -7 & (-1, -7) \\ \hline 0 & -5 & (0, -5) \\ \hline 1 & -3 & (1, -3) \\ \hline 2 & -1 & (2, -1) \\ \hline \end{tabular} \][/tex]

So, the completed table is:

[tex]\[ \begin{tabular}{|c|c|c|} \hline x & y & (x, y) \\ \hline -2 & -9 & (-2, -9) \\ \hline -1 & -7 & (-1, -7) \\ \hline 0 & -5 & (0, -5) \\ \hline 1 & -3 & (1, -3) \\ \hline 2 & -1 & (2, -1) \\ \hline \end{tabular} \][/tex]