Select the correct answer.

Solve the equation by completing the square.
[tex]
x^2 - 18x + 58 = 0
[/tex]

A. [tex]x = 9 \pm \sqrt{23}[/tex]

B. [tex]x = -9 \pm \sqrt{23}[/tex]

C. [tex]x = -9 \pm \sqrt{139}[/tex]

D. [tex]x = 9 \pm \sqrt{139}[/tex]



Answer :

To solve the equation [tex]\( x^2 - 18x + 58 = 0 \)[/tex] by completing the square, follow these steps:

1. Move the constant term to the other side of the equation:
[tex]\[ x^2 - 18x = -58 \][/tex]

2. Complete the square on the left side:
- Take the coefficient of [tex]\( x \)[/tex], which is [tex]\(-18\)[/tex], divide it by 2, and square the result.
[tex]\[ \left( \frac{-18}{2} \right)^2 = (-9)^2 = 81 \][/tex]

3. Add and subtract this square inside the equation:
[tex]\[ x^2 - 18x + 81 = -58 + 81 \][/tex]

4. Simplify both sides:
[tex]\[ x^2 - 18x + 81 = 23 \][/tex]

5. Rewrite the left side as the square of a binomial:
[tex]\[ (x - 9)^2 = 23 \][/tex]

6. Take the square root of both sides:
[tex]\[ x - 9 = \pm \sqrt{23} \][/tex]

7. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = 9 \pm \sqrt{23} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{A. \ x = 9 \pm \sqrt{23}} \][/tex]