Answer :

Let's simplify the expression: [tex]\(\left(6^{2n+3}\right)\left(8^n\right)\left(3^{2n}\right)\)[/tex].

Step 1: Rewrite using base factors

- Recognize that [tex]\(6\)[/tex] can be written as [tex]\(2 \times 3\)[/tex]:
[tex]\[ 6^{2n+3} = (2 \cdot 3)^{2n+3} \][/tex]

- Recognize that [tex]\(8\)[/tex] can be written as [tex]\(2^3\)[/tex]:
[tex]\[ 8^n = (2^3)^n = 2^{3n} \][/tex]

- The term [tex]\(3^{2n}\)[/tex] remains unchanged.

Step 2: Apply exponent rules

- For the term [tex]\((2 \cdot 3)^{2n+3}\)[/tex], we can apply the rule [tex]\((ab)^m = a^m \cdot b^m\)[/tex]:
[tex]\[ (2 \cdot 3)^{2n+3} = 2^{2n+3} \cdot 3^{2n+3} \][/tex]

- Now our expression becomes:
[tex]\[ (2^{2n+3} \cdot 3^{2n+3}) \cdot 2^{3n} \cdot 3^{2n} \][/tex]

Step 3: Combine terms with the same base

- Combine the terms with base [tex]\(2\)[/tex]:
[tex]\[ 2^{2n+3} \cdot 2^{3n} \][/tex]

Using the rule [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]:
[tex]\[ 2^{(2n+3) + 3n} = 2^{5n+3} \][/tex]

- Combine the terms with base [tex]\(3\)[/tex]:
[tex]\[ 3^{2n+3} \cdot 3^{2n} \][/tex]

Using the same exponent rule:
[tex]\[ 3^{(2n+3) + 2n} = 3^{4n+3} \][/tex]

Step 4: Write the final simplified expression

Therefore, the simplified form of the expression is:
[tex]\[ (2^{5n+3}) \cdot (3^{4n+3}) \][/tex]

So, the final simplified result is:
[tex]\[ (2^{5n+3}) \cdot (3^{4n+3}) \][/tex]