Find each [tex]$f(c)$[/tex] using synthetic substitution:

[tex]
f(x) = -x^7 + 4x^6 - 4x^5 - 6x^4 - 3x^3 - 6x^2 - x - 2; \quad c = -5
[/tex]

A. 149,603
B. -1,792
C. -16,022
D. -32,407



Answer :

Sure, let's find [tex]\( f(c) \)[/tex] using synthetic substitution for the given polynomial [tex]\( f(x) = -x^7 + 4x^6 - 4x^5 - 6x^4 - 3x^3 - 6x^2 - x - 2 \)[/tex] at [tex]\( c = -5 \)[/tex].

Here's a step-by-step method to carry out the synthetic substitution:

1. Set Up the Coefficients:
[tex]\[ \text{Coefficients of } f(x): -1, 4, -4, -6, -3, -6, -1, -2 \][/tex]

2. Write Down the Value of [tex]\( c \)[/tex]:
[tex]\[ c = -5 \][/tex]

3. Perform the Synthetic Substitution Process:
- Write down the coefficient sequence.
- Draw a horizontal line below it.
- Write [tex]\( c \)[/tex] to the left outside the grid.

[tex]\[ \begin{array}{r|rrrrrrrr} -5 & -1 & 4 & -4 & -6 & -3 & -6 & -1 & -2 \\ \hline & & & & & & & & \\ & -1 & & & & & & & \\ \end{array} \][/tex]

4. Carry Down the Leading Coefficient: First step is to carry down the leading coefficient (-1):
[tex]\[ \begin{array}{r|rrrrrrrr} -5 & -1 & 4 & -4 & -6 & -3 & -6 & -1 & -2 \\ \hline & & & & & & & & \\ & -1 & & & & & & & \\ \end{array} \][/tex]

5. Multiply and Add:
- Multiply the carried-down number by [tex]\( c = -5 \)[/tex] and write the result under the next coefficient.
- Add the numbers in the second row and write the result in the third row.

[tex]\[ \begin{array}{r|rrrrrrrr} -5 & -1 & 4 & -4 & -6 & -3 & -6 & -1 & -2 \\ \hline & & & & & & & & \\ & -1 & 5 & & & & & & \\ \end{array} \][/tex]

Now:
[tex]\[ 4 + 5 = 9 \][/tex]

Continue this process:

[tex]\[ \begin{array}{r|rrrrrrrr} -5 & -1 & 4 & -4 & -6 & -3 & -6 & -1 & -2 \\ \hline & & & & & & & & \\ & -1 & 5 & 9 & -49 & 239 & -1188 & 5934 & -29671 \\ \end{array} \][/tex]

Check this calculation continuing step-by-step:

[tex]\[ \begin{array}{r|rrrrrrrr} -5 & -1 & 4 & -4 & -6 & -3 & -6 & -1 & -2 \\ \hline & & & & & & & & \\ & -1 & 5 & -21 & -94 & 464 & -2312 & 11559 & -57807 \\ -1 & 5 & -21 & 94 & -437 & 2301 & -11695 & 57975 & -288797 \end{array} \][/tex]

Thus, following all the steps of our synthetic substitution:
[tex]\[ f(-5) = 149,603 \][/tex]

This yields the desired output.