Answer :
To find the value of [tex]\( x \)[/tex] in the given equation:
[tex]\[ \frac{3x - 4}{14} = \frac{9}{10} \][/tex]
we can follow these steps:
1. Cross Multiply the Fractions:
By cross multiplying, we eliminate the fractions and get:
[tex]\[ 10 \cdot (3x - 4) = 14 \cdot 9 \][/tex]
2. Simplify the Equation:
Next, simplify both sides:
[tex]\[ 10 \cdot (3x - 4) = 140 + 16 - 30 - 24 \][/tex]
[tex]\[ 10 \cdot 3x - 10 \cdot 4 = 14 \cdot 9 \][/tex]
We simplify it to:
[tex]\[ 30x - 40 = 126 \][/tex]
3. Move the Constant Term:
Add 40 to both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 30x - 40 + 40 = 126 + 40 \][/tex]
This simplifies to:
[tex]\[ 30x = 166 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Finally, divide both sides by 30 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{166}{30} \][/tex]
Simplify this division:
[tex]\[ x \approx 5.5333 \][/tex]
Given the options, the value of [tex]\( x \)[/tex] to the nearest provided choice is:
b. 5.5
[tex]\[ \frac{3x - 4}{14} = \frac{9}{10} \][/tex]
we can follow these steps:
1. Cross Multiply the Fractions:
By cross multiplying, we eliminate the fractions and get:
[tex]\[ 10 \cdot (3x - 4) = 14 \cdot 9 \][/tex]
2. Simplify the Equation:
Next, simplify both sides:
[tex]\[ 10 \cdot (3x - 4) = 140 + 16 - 30 - 24 \][/tex]
[tex]\[ 10 \cdot 3x - 10 \cdot 4 = 14 \cdot 9 \][/tex]
We simplify it to:
[tex]\[ 30x - 40 = 126 \][/tex]
3. Move the Constant Term:
Add 40 to both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 30x - 40 + 40 = 126 + 40 \][/tex]
This simplifies to:
[tex]\[ 30x = 166 \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Finally, divide both sides by 30 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{166}{30} \][/tex]
Simplify this division:
[tex]\[ x \approx 5.5333 \][/tex]
Given the options, the value of [tex]\( x \)[/tex] to the nearest provided choice is:
b. 5.5