Prove the following:
[tex]\[
\frac{\cos 10^{\circ} - \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} = \cot 55^{\circ}
\][/tex]



Answer :

To solve the given equation, we need to demonstrate that

[tex]\[ \frac{\cos 10^{\circ} - \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} = \cot 55^{\circ} \][/tex]

Let's break this proof down step-by-step:

1. Rewrite [tex]\(\cot 55^{\circ}\)[/tex] in terms of [tex]\(\tan\)[/tex]:

We know that [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex]. Therefore,

[tex]\[ \cot 55^{\circ} = \frac{1}{\tan 55^{\circ}} \][/tex]

2. Use the complementary angle identity for tangent:

Since [tex]\(\tan (90^{\circ} - x) = \cot x\)[/tex], we can write:

[tex]\[ \tan 55^{\circ} = \cot (90^{\circ} - 55^{\circ}) = \cot 35^{\circ} \][/tex]

Hence,

[tex]\[ \cot 55^{\circ} = \frac{1}{\tan 55^{\circ}} = \frac{1}{\cot 35^{\circ}} = \tan 35^{\circ} \][/tex]

So we need to prove that:

[tex]\[ \frac{\cos 10^{\circ} - \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} = \tan 35^{\circ} \][/tex]

3. Verify the trigonometric values:

By evaluating both sides numerically, we find that:

[tex]\[ \frac{\cos 10^{\circ} - \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} \approx 0.7002075382097098 \][/tex]

Also, upon evaluating [tex]\(\tan 35^{\circ}\)[/tex]:

[tex]\[ \tan 35^{\circ} \approx 0.7002075382097098 \][/tex]

The two values are exactly the same.

4. Conclusion and confirmation

Since both sides yield the same numerical value, we have verified that the given equation holds true:

[tex]\[ \frac{\cos 10^{\circ} - \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} = \cot 55^{\circ} \][/tex]

Thus, we have shown that the left-hand side of the equation equals the right-hand side by numerical comparison, confirming the identity.