Simplify the following expressions:

(a) [tex]-2(x+y)[/tex]

(b) [tex]-x(-x-y)[/tex]

(c) [tex]-2x(-x+4y)[/tex]

(d) [tex]-x^4(x^2-x)[/tex]

(e) [tex]-5x(-2x^2+3x-1)[/tex]



Answer :

Sure, let's simplify each expression step by step.

(a) [tex]\(-2(x + y)\)[/tex]

To simplify this, we apply the distributive property. The distributive property states that [tex]\( a(b + c) = ab + ac \)[/tex].

[tex]\[ -2(x + y) = -2 \cdot x + (-2) \cdot y = -2x - 2y \][/tex]

So, the simplified form is:

[tex]\[ -2x - 2y \][/tex]

(d) [tex]\(-x(-x - y)\)[/tex]

Again, we use the distributive property.

[tex]\[ -x(-x - y) = -x \cdot (-x) + (-x) \cdot (-y) = x^2 + xy \][/tex]

So, the simplified form is:

[tex]\[ x^2 + xy \][/tex]

(g) [tex]\(-2x(-x + 4y)\)[/tex]

Using the distributive property:

[tex]\[ -2x(-x + 4y) = -2x \cdot (-x) + (-2x) \cdot 4y = 2x^2 - 8xy \][/tex]

So, the simplified form is:

[tex]\[ 2x^2 - 8xy \][/tex]

(i) [tex]\(-x^4(x^2 - x)\)[/tex]

Distribute [tex]\(-x^4\)[/tex]:

[tex]\[ -x^4(x^2 - x) = -x^4 \cdot x^2 + (-x^4) \cdot (-x) = -x^6 + x^5 \][/tex]

So, the simplified form is:

[tex]\[ -x^6 + x^5 \][/tex]

(m) [tex]\(-5x(-2x^2 + 3x - 1)\)[/tex]

Applying the distributive property:

[tex]\[ -5x(-2x^2 + 3x - 1) = -5x \cdot (-2x^2) + (-5x) \cdot 3x + (-5x) \cdot (-1) \][/tex]

Calculate each term:

[tex]\[ = 10x^3 - 15x^2 + 5x \][/tex]

So, the simplified form is:

[tex]\[ 10x^3 - 15x^2 + 5x \][/tex]

To summarize:

(a) [tex]\(-2(x + y) = -2x - 2y\)[/tex]

(d) [tex]\(-x(-x - y) = x^2 + xy\)[/tex]

(g) [tex]\(-2x(-x + 4y) = 2x^2 - 8xy\)[/tex]

(i) [tex]\(-x^4(x^2 - x) = -x^6 + x^5\)[/tex]

(m) [tex]\(-5x(-2x^2 + 3x - 1) = 10x^3 - 15x^2 + 5x\)[/tex]