Answered

Rank the following solutions from the highest [tex]\left[ H _3 O ^{+}\right] \text{(1)}[/tex] to the lowest [tex]\left[ H _3 O ^{+}\right] \text{(5)}[/tex].

1. [tex]\left[ H _3 O ^{+}\right] = 3.16 \times 10^{-4} \, M[/tex]
2. [tex]pH = 1.05[/tex]
3. [tex]pOH = 4.0[/tex]
4. [tex]pOH = 7.0[/tex]

Note: The second option "[tex]\left[ HH ^2 = 4.35 \times 10^2 \, N \right][/tex]" does not fit the context of hydronium ion concentration ranking and has been removed.



Answer :

To solve this problem, we need to compare the hydronium ion concentrations [tex]\([H_3O^+]\)[/tex] for the various given measurements and rank them from highest to lowest.

Given:
1. [tex]\([H_3O^+] = 3.16 \times 10^{-4} \, M\)[/tex]
2. [tex]\([HH^2 = 4.35 \times 10^2 \, N]\)[/tex] (This value is irrelevant in this context)
3. [tex]\( pH = 1.05 \)[/tex]
4. [tex]\( pOH = 7.0 \)[/tex]
5. [tex]\( pOH = 4.0 \)[/tex]

### Step-by-step Solution:

#### Step 1: Calculate [tex]\([H_3O^+]\)[/tex] from [tex]\( pH \)[/tex]

For [tex]\( pH = 1.05 \)[/tex]:

The relationship between [tex]\([H_3O^+]\)[/tex] and [tex]\( pH \)[/tex] is given by:
[tex]\[ [H_3O^+] = 10^{-pH} \][/tex]

So,
[tex]\[ [H_3O^+] = 10^{-1.05} \approx 0.0891 \][/tex]

#### Step 2: Calculate [tex]\([H_3O^+]\)[/tex] from [tex]\( pOH = 7.0 \)[/tex]

Using the relationship [tex]\( pH + pOH = 14 \)[/tex]:
[tex]\[ pH = 14 - pOH = 14 - 7.0 = 7.0 \][/tex]

Then, using the same formula:
[tex]\[ [H_3O^+] = 10^{-pH} \][/tex]
[tex]\[ [H_3O^+] = 10^{-7.0} = 10^{-7} = 1.0 \times 10^{-7} \, M \][/tex]

#### Step 3: Calculate [tex]\([H_3O^+]\)[/tex] from [tex]\( pOH = 4.0 \)[/tex]

Using the relationship [tex]\( pH + pOH = 14 \)[/tex]:
[tex]\[ pH = 14 - pOH = 14 - 4.0 = 10.0 \][/tex]

Then, using the same formula:
[tex]\[ [H_3O^+] = 10^{-pH} \][/tex]
[tex]\[ [H_3O^+] = 10^{-10.0} = 10^{-10} = 1.0 \times 10^{-10} \, M \][/tex]

### Summary of Calculated [tex]\([H_3O^+]\)[/tex] Values:
1. Given: [tex]\( 3.16 \times 10^{-4} \, M \)[/tex]
2. Calculated from [tex]\( pH = 1.05 \)[/tex]: [tex]\( 0.0891 \, M \)[/tex]
3. Calculated from [tex]\( pOH = 7.0 \)[/tex]: [tex]\( 1.0 \times 10^{-7} \, M \)[/tex]
4. Calculated from [tex]\( pOH = 4.0 \)[/tex]: [tex]\( 1.0 \times 10^{-10} \, M \)[/tex]

### Step 4: Rank these values from highest to lowest:
- [tex]\( 0.0891 \, M \)[/tex] (derived from [tex]\( pH = 1.05 \)[/tex])
- [tex]\( 3.16 \times 10^{-4} \, M \)[/tex]
- [tex]\( 1.0 \times 10^{-7} \, M \)[/tex] (derived from [tex]\( pOH = 7.0 \)[/tex])
- [tex]\( 1.0 \times 10^{-10} \, M \)[/tex] (derived from [tex]\( pOH = 4.0 \)[/tex])

### Final Ranking:
1. [tex]\( 0.0891 \, M \)[/tex] (Solution derived from [tex]\( pH = 1.05 \)[/tex])
2. [tex]\( 3.16 \times 10^{-4} \, M \)[/tex] (Given concentration)
3. [tex]\( 1.0 \times 10^{-7} \, M \)[/tex] (Solution derived from [tex]\( pOH = 7.0 \)[/tex])
4. [tex]\( 1.0 \times 10^{-10} \, M \)[/tex] (Solution derived from [tex]\( pOH = 4.0 \)[/tex])

Therefore, the order is:

- For [tex]\(\left[ H _3 O ^{+}\right] = 0.0891 \, M\)[/tex], rank 1
- For [tex]\(\left[ H _3 O ^{+}\right] = 3.16 \times 10^{-4} \, M\)[/tex], rank 2
- For [tex]\(\left[ H _3 O ^{+}\right] = 1.0 \times 10^{-7} \, M\)[/tex], rank 3
- For [tex]\(\left[ H _3 O ^{+}\right] = 1.0 \times 10^{-10} \, M\)[/tex], rank 4