Answer :
To solve this problem, we need to determine the mass of helium (He) present in the gas mixture. We will use the Ideal Gas Law and the concept of partial pressures step-by-step. Here is the detailed solution:
1. Given Parameters:
- Volume (V) = 18.0 L
- Moles of N₂ (n_N2) = 0.250 moles
- Moles of O₂ (n_O2) = 0.250 moles
- Total pressure (P_total) = 1.00 atm
- Temperature (T) = 0°C
- Universal gas constant (R) = 0.0821 L·atm·K⁻¹·mol⁻¹
2. Convert Temperature to Kelvin:
- Temperature in Kelvin (T_K) = 0 + 273.15 = 273.15 K
3. Calculate Total Moles of Gases Present (excluding He):
- Total moles of gases (excluding He) = moles of N₂ + moles of O₂
- Total moles = 0.250 + 0.250 = 0.500 moles
4. Using the Ideal Gas Law to calculate the total moles and solve for the moles of He:
- Ideal Gas Law: [tex]\( PV = nRT \)[/tex]
- Rearrange to solve for total moles (including He):
[tex]\[ n = \frac{P \cdot V}{R \cdot T} \][/tex]
- Substituting the values:
[tex]\[ n_{total} = \frac{1.00 \: \text{atm} \cdot 18.0 \: \text{L}}{0.0821 \: \text{L·atm·K⁻¹·mol⁻¹} \cdot 273.15 \: \text{K}} = 0.8026535727113838 \: \text{moles} \][/tex]
- Subtracting the moles of N₂ and O₂ to find the moles of He:
[tex]\[ n_{He} = 0.8026535727113838 \: \text{moles} - 0.500 \: \text{moles} = 0.3026535727113838 \: \text{moles} \][/tex]
5. Calculate the Mass of Helium:
- Molar mass of Helium (He) = 4.00 g/mol
- Mass of Helium:
[tex]\[ \text{mass of He} = \text{moles of He} \times \text{molar mass of He} = 0.3026535727113838 \: \text{moles} \times 4.00 \: \text{g/mol} = 1.2106142908455353 \: \text{g} \][/tex]
- Rounded to three significant figures: mass of He ≈ 1.21 g
Thus, the mass of helium (He) present in the gas mixture is approximately [tex]\( 1.21 \)[/tex] grams.
1. Given Parameters:
- Volume (V) = 18.0 L
- Moles of N₂ (n_N2) = 0.250 moles
- Moles of O₂ (n_O2) = 0.250 moles
- Total pressure (P_total) = 1.00 atm
- Temperature (T) = 0°C
- Universal gas constant (R) = 0.0821 L·atm·K⁻¹·mol⁻¹
2. Convert Temperature to Kelvin:
- Temperature in Kelvin (T_K) = 0 + 273.15 = 273.15 K
3. Calculate Total Moles of Gases Present (excluding He):
- Total moles of gases (excluding He) = moles of N₂ + moles of O₂
- Total moles = 0.250 + 0.250 = 0.500 moles
4. Using the Ideal Gas Law to calculate the total moles and solve for the moles of He:
- Ideal Gas Law: [tex]\( PV = nRT \)[/tex]
- Rearrange to solve for total moles (including He):
[tex]\[ n = \frac{P \cdot V}{R \cdot T} \][/tex]
- Substituting the values:
[tex]\[ n_{total} = \frac{1.00 \: \text{atm} \cdot 18.0 \: \text{L}}{0.0821 \: \text{L·atm·K⁻¹·mol⁻¹} \cdot 273.15 \: \text{K}} = 0.8026535727113838 \: \text{moles} \][/tex]
- Subtracting the moles of N₂ and O₂ to find the moles of He:
[tex]\[ n_{He} = 0.8026535727113838 \: \text{moles} - 0.500 \: \text{moles} = 0.3026535727113838 \: \text{moles} \][/tex]
5. Calculate the Mass of Helium:
- Molar mass of Helium (He) = 4.00 g/mol
- Mass of Helium:
[tex]\[ \text{mass of He} = \text{moles of He} \times \text{molar mass of He} = 0.3026535727113838 \: \text{moles} \times 4.00 \: \text{g/mol} = 1.2106142908455353 \: \text{g} \][/tex]
- Rounded to three significant figures: mass of He ≈ 1.21 g
Thus, the mass of helium (He) present in the gas mixture is approximately [tex]\( 1.21 \)[/tex] grams.