If
[tex]\[ P=\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2}\end{array}\right), \quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \][/tex]
and
[tex]\[ Q=P A P^\tau \][/tex]
and
[tex]\[ X=P^T Q^{2015} P, \][/tex]
then the sum of all elements of [tex]\( X \)[/tex] is:
[tex]\[
\square
\][/tex]



Answer :

To find the sum of all elements of the matrix [tex]\(X\)[/tex], let's break down the problem into detailed steps. We are given:

[tex]\[ P = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \][/tex]

[tex]\[ A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \][/tex]

We need to calculate matrices step-by-step and finally find the sum of all elements in matrix [tex]\(X\)[/tex].

### Step 1: Compute [tex]\( P^\tau \)[/tex]
Since the transpose ([tex]\(\tau\)[/tex]) of matrix [tex]\(P\)[/tex] is simply swapping rows with columns,

[tex]\[ P^\tau = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \][/tex]

### Step 2: Compute [tex]\( Q = P A P^\tau \)[/tex]
We perform the matrix multiplication for [tex]\( Q \)[/tex]:

[tex]\[ Q = P A P^\tau = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \][/tex]

Upon calculation (details omitted for brevity), this results in:

[tex]\[ Q = \begin{pmatrix} 1.4330127 & 0.75 \\ -0.25 & 0.5669873 \end{pmatrix} \][/tex]

### Step 3: Compute [tex]\( Q^{2015} \)[/tex]
We now find the 2015th power of matrix [tex]\(Q\)[/tex]:

[tex]\[ Q^{2015} = \begin{pmatrix} 873.52059474 & 1511.25000074 \\ -503.75000024 & -871.52059473 \end{pmatrix} \][/tex]

### Step 4: Compute [tex]\( X = P^\tau Q^{2015} P \)[/tex]
Next, we compute [tex]\(X\)[/tex] by multiplying [tex]\(P^\tau\)[/tex], [tex]\(Q^{2015}\)[/tex], and [tex]\(P\)[/tex]:

[tex]\[ X = P^\tau Q^{2015} P \][/tex]

Upon computation (details omitted), it results in:

[tex]\[ X = \begin{pmatrix} 1.0 & 2015.0 \\ -5.57803803 \times 10^{-12} & 1.0 \end{pmatrix} \][/tex]

### Step 5: Sum of all elements in [tex]\(X\)[/tex]
Finally, we sum all the elements of [tex]\(X\)[/tex]:

[tex]\[ \text{Sum} = 1.0 + 2015.0 - 5.57803803 \times 10^{-12} + 1.0 \approx 2017.0 \][/tex]

Thus, the sum of all elements of [tex]\(X\)[/tex] is:

[tex]\[ \boxed{2017} \][/tex]