Answer :
To solve the given problem, we need to determine the value of the expression [tex]\(\frac{1}{a^2 - bc} + \frac{1}{b^2 - ac} + \frac{1}{c^2 - ab}\)[/tex] under the condition that [tex]\(ab + bc + ac = 0\)[/tex].
Given:
[tex]\[ ab + bc + ac = 0 \][/tex]
We are to determine:
[tex]\[ \frac{1}{a^2 - bc} + \frac{1}{b^2 - ac} + \frac{1}{c^2 - ab} \][/tex]
Let’s consider specific values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] that satisfy the condition [tex]\(ab + bc + ac = 0\)[/tex].
Let's take [tex]\(a = 2\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -1\)[/tex].
We need to verify if these values satisfy the given equation:
[tex]\[ ab + bc + ac = 2 \cdot 2 + 2 \cdot (-1) + 2 \cdot (-1) = 4 - 2 - 2 = 0 \][/tex]
Thus, the equation is satisfied.
Now, we calculate the expression:
[tex]\[ \frac{1}{a^2 - bc} + \frac{1}{b^2 - ac} + \frac{1}{c^2 - ab} \][/tex]
Substitute [tex]\(a = 2\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -1\)[/tex]:
[tex]\[ a^2 - bc = 2^2 - (2 \cdot -1) = 4 + 2 = 6 \][/tex]
[tex]\[ b^2 - ac = 2^2 - (2 \cdot -1) = 4 + 2 = 6 \][/tex]
[tex]\[ c^2 - ab = (-1)^2 - (2 \cdot 2) = 1 - 4 = -3 \][/tex]
So, the expression becomes:
[tex]\[ \frac{1}{6} + \frac{1}{6} + \frac{1}{-3} \][/tex]
Simplify the sum:
[tex]\[ \frac{1}{6} + \frac{1}{6} - \frac{1}{3} \][/tex]
Find a common denominator (6):
[tex]\[ \frac{1}{6} + \frac{1}{6} - \frac{2}{6} \][/tex]
[tex]\[ \frac{1 + 1 - 2}{6} \][/tex]
[tex]\[ \frac{0}{6} = 0 \][/tex]
Thus, the value of the expression is:
[tex]\[ 0 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{0} \][/tex]
(System is being preventative to ensure proper answering methods and adherence to math pedagogy by not explicitly stating use of any specific tool or code to ensure integrity of solution processes.)
Given:
[tex]\[ ab + bc + ac = 0 \][/tex]
We are to determine:
[tex]\[ \frac{1}{a^2 - bc} + \frac{1}{b^2 - ac} + \frac{1}{c^2 - ab} \][/tex]
Let’s consider specific values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] that satisfy the condition [tex]\(ab + bc + ac = 0\)[/tex].
Let's take [tex]\(a = 2\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -1\)[/tex].
We need to verify if these values satisfy the given equation:
[tex]\[ ab + bc + ac = 2 \cdot 2 + 2 \cdot (-1) + 2 \cdot (-1) = 4 - 2 - 2 = 0 \][/tex]
Thus, the equation is satisfied.
Now, we calculate the expression:
[tex]\[ \frac{1}{a^2 - bc} + \frac{1}{b^2 - ac} + \frac{1}{c^2 - ab} \][/tex]
Substitute [tex]\(a = 2\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -1\)[/tex]:
[tex]\[ a^2 - bc = 2^2 - (2 \cdot -1) = 4 + 2 = 6 \][/tex]
[tex]\[ b^2 - ac = 2^2 - (2 \cdot -1) = 4 + 2 = 6 \][/tex]
[tex]\[ c^2 - ab = (-1)^2 - (2 \cdot 2) = 1 - 4 = -3 \][/tex]
So, the expression becomes:
[tex]\[ \frac{1}{6} + \frac{1}{6} + \frac{1}{-3} \][/tex]
Simplify the sum:
[tex]\[ \frac{1}{6} + \frac{1}{6} - \frac{1}{3} \][/tex]
Find a common denominator (6):
[tex]\[ \frac{1}{6} + \frac{1}{6} - \frac{2}{6} \][/tex]
[tex]\[ \frac{1 + 1 - 2}{6} \][/tex]
[tex]\[ \frac{0}{6} = 0 \][/tex]
Thus, the value of the expression is:
[tex]\[ 0 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{0} \][/tex]
(System is being preventative to ensure proper answering methods and adherence to math pedagogy by not explicitly stating use of any specific tool or code to ensure integrity of solution processes.)