Answer :

Sure, let's simplify the given expression step-by-step:

The given expression is:

[tex]\[ \frac{2 x^3 + 8 x^3}{(5 x)(2 x^2)} \][/tex]

Step 1: Simplify the numerator

The numerator is [tex]\(2 x^3 + 8 x^3\)[/tex]. We can combine like terms:

[tex]\[ 2 x^3 + 8 x^3 = (2 + 8) x^3 = 10 x^3 \][/tex]

So, the numerator becomes [tex]\(10 x^3\)[/tex].

Step 2: Simplify the denominator

The denominator is [tex]\((5 x)(2 x^2)\)[/tex]. We can multiply these terms:

[tex]\[ (5 x)(2 x^2) = 5 \cdot 2 \cdot x \cdot x^2 = 10 x^3 \][/tex]

So, the denominator becomes [tex]\(10 x^3\)[/tex].

Step 3: Put the simplified numerator and denominator into the fraction

Now, we substitute back the simplified numerator and denominator into the fraction:

[tex]\[ \frac{10 x^3}{10 x^3} \][/tex]

Step 4: Simplify the fraction

Since the numerator and the denominator are the same, they cancel each other out:

[tex]\[ \frac{10 x^3}{10 x^3} = 1 \][/tex]

So, the simplified expression is:

[tex]\[ 1 \][/tex]

Therefore, the simplified result of the given expression is [tex]\(1\)[/tex].