Verify if the operation '[tex]$\&$[/tex]' defined for any two integers [tex]$a$[/tex] and [tex]$b$[/tex] such that [tex]$a \& b = (a \times a) - (b \times b)$[/tex] is commutative. Use a pair of sample values for [tex]$a$[/tex] and [tex]$b$[/tex] to check whether [tex]$a \& b = b \& a$[/tex].



Answer :

Let's analyze the problem step-by-step:

1. Define the operation:
The operation [tex]\( \& \)[/tex] is defined for any two integers [tex]\( a \)[/tex] and [tex]\( b \)[/tex] as follows:
[tex]\[ a \& b = (a \times a) - (b \times b) \][/tex]

2. Select sample values:
We'll use [tex]\( a = 5 \)[/tex] and [tex]\( b = 3 \)[/tex] as our sample values to check if [tex]\( a \& b = b \& a \)[/tex].

3. Calculate [tex]\( a \& b \)[/tex]:
First, we need to find [tex]\( a \& b \)[/tex] with [tex]\( a = 5 \)[/tex] and [tex]\( b = 3 \)[/tex].
[tex]\[ a \& b = (5 \times 5) - (3 \times 3) \][/tex]
[tex]\[ = 25 - 9 \][/tex]
[tex]\[ = 16 \][/tex]

4. Calculate [tex]\( b \& a \)[/tex]:
Next, we need to find [tex]\( b \& a \)[/tex] with [tex]\( b = 3 \)[/tex] and [tex]\( a = 5 \)[/tex].
[tex]\[ b \& a = (3 \times 3) - (5 \times 5) \][/tex]
[tex]\[ = 9 - 25 \][/tex]
[tex]\[ = -16 \][/tex]

5. Compare the results:
From the calculations, we have found:
[tex]\[ a \& b = 16 \][/tex]
[tex]\[ b \& a = -16 \][/tex]
Clearly, [tex]\( a \& b \neq b \& a \)[/tex] because 16 is not equal to -16.

6. Conclusion:
For the given sample values of [tex]\( a = 5 \)[/tex] and [tex]\( b = 3 \)[/tex], the operation [tex]\( a \& b \)[/tex] does not equal [tex]\( b \& a \)[/tex]. Hence, [tex]\( a \& b \neq b \& a \)[/tex] for these values.

The final result confirms that with [tex]\( a = 5 \)[/tex] and [tex]\( b = 3 \)[/tex]:
[tex]\[ a \& b = 16, \quad b \& a = -16, \quad \text{and} \quad 16 \neq -16 \][/tex]
Therefore, [tex]\( a \& b \neq b \& a \)[/tex].