Charlie walks in a straight line at a steady speed of [tex]2 \, \text{ms}^{-1}[/tex] for 15 seconds. Work out the distance Charlie traveled from the starting point after 10 seconds of walking.

Ans:

[tex]\[ \text{Distance} = \text{speed} \times \text{time} \][/tex]

[tex]\[ \text{Distance} = 2 \, \text{ms}^{-1} \times 10 \, \text{s} \][/tex]

[tex]\[ \text{Distance} = 20 \, \text{meters} \][/tex]



Answer :

To determine the distance that Charlie travelled from the starting point after 15 seconds of walking at a steady speed, we can use the fundamental formula for distance in the context of uniform motion:

[tex]\[ \text{Distance} = \text{Speed} \times \text{Time} \][/tex]

Given:
- The speed of Charlie's walking is [tex]\(2 \, \text{meters/second}\)[/tex].
- The time Charlie walks is [tex]\(15 \, \text{seconds}\)[/tex].

Using the provided values:

[tex]\[ \text{Distance} = 2 \, \text{meters/second} \times 15 \, \text{seconds} \][/tex]

Now, multiply the speed by the time:

[tex]\[ \text{Distance} = 2 \times 15 = 30 \, \text{meters} \][/tex]

Therefore, the distance Charlie travelled from the starting point after 15 seconds of walking is:

[tex]\[ 30 \, \text{meters} \][/tex]