Given the vertex [tex]\(\left(-\frac{1}{2}, 3\right)\)[/tex] and the directrix [tex]\(x = -\frac{13}{24}\)[/tex], what are the values for [tex]\(a\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex] in the vertex form of the parabola?

[tex]\[x = a(y - k)^2 + h\][/tex]

Type the correct answer in the box.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
a & & & & & & & & & \\
h & & & & & & & & & \\
k & & & & & & & & & \\
\hline
\end{tabular}
\][/tex]



Answer :

To find the values for [tex]\(a\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex] in the vertex form of the parabola given the vertex [tex]\(\left(-\frac{1}{2}, 3\right)\)[/tex] and the directrix [tex]\(x = -\frac{13}{24}\)[/tex], follow these steps:

1. Identify the vertex coordinates (h, k):

From the given vertex [tex]\(\left(-\frac{1}{2}, 3\right)\)[/tex]:
[tex]\[ h = -\frac{1}{2}, \quad k = 3 \][/tex]

2. Determine the value of [tex]\(a\)[/tex]:

The directrix is given as [tex]\(x = -\frac{13}{24}\)[/tex]. For a parabola with vertex form [tex]\(x = a(y - k)^2 + h\)[/tex], the value of [tex]\(a\)[/tex] can be found using the relationship between the vertex and the directrix.

Since the distance from the vertex to the directrix is [tex]\(|h - \text{directrix}|\)[/tex], this distance is:
[tex]\[ \left|-\frac{1}{2} + \frac{13}{24}\right| \][/tex]

This simplifies to:
[tex]\[ \left|-\frac{12}{24} + \frac{13}{24}\right| = \left|\frac{1}{24}\right| = \frac{1}{24} \][/tex]

The value of [tex]\(a\)[/tex] is:
[tex]\[ a = \frac{1}{4 \cdot \left(\frac{1}{24}\right)} = \frac{1}{\frac{1}{6}} = 6 \][/tex]

Therefore, the values are:

[tex]\[ a = 6, \quad h = -0.5, \quad k = 3 \][/tex]

So, the correct answer is [tex]\(a = 6\)[/tex], [tex]\(h = -0.5\)[/tex], and [tex]\(k = 3\)[/tex].