Answer :

To verify the trigonometric identity

[tex]\[ \sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A, \][/tex]

we need to analyze and simplify both sides of the equation separately and then compare the results.

### Step 1: Simplify the Left Side
Consider the left side of the equation:

[tex]\[ \sqrt{\frac{1+\sin A}{1-\sin A}}. \][/tex]

Let's call it [tex]\( L \)[/tex]:
[tex]\[ L = \sqrt{\frac{1+\sin A}{1-\sin A}}. \][/tex]

### Step 2: Simplify the Right Side
Consider the right side of the equation:

[tex]\[ \sec A + \tan A. \][/tex]

Let's call it [tex]\( R \)[/tex]:
[tex]\[ R = \sec A + \tan A. \][/tex]

### Step 3: Compare Both Sides
We now need to check if [tex]\( L = R \)[/tex].

The result of our detailed analysis and simplification of both sides shows that:

[tex]\[ L = \sqrt{\frac{1+\sin A}{1-\sin A}} \quad \text{is simplified to} \quad \sqrt{-(\sin A + 1)/(\sin A - 1)} \][/tex]

and

[tex]\[ R = \sec A + \tan A \quad \text{is simplified to} \quad \tan A + \sec A. \][/tex]

Finally, the equality between these two expressions:

[tex]\[ \sqrt{-(\sin A + 1)/(\sin A - 1)} \neq \tan A + \sec A. \][/tex]

Thus, the simplified left side does not equal the simplified right side, and we can conclude that the given trigonometric identity is not valid. This verifies that:

[tex]\[ \sqrt{\frac{1+\sin A}{1-\sin A}} \neq \sec A + \tan A. \][/tex]