Answer :
To determine which fraction is equivalent to [tex]\( \frac{3}{5} \)[/tex], we compare each of the given options to [tex]\( \frac{3}{5} \)[/tex].
1. First, let's compare [tex]\( \frac{18}{25} \)[/tex] to [tex]\( \frac{3}{5} \)[/tex].
We can convert both fractions to have a common denominator
```
\frac{3}{5} = \frac{3 \times 5}{5 \times 5} = \frac{15}{25}
```
2. Now, let's compare [tex]\( \frac{20}{25} \)[/tex] to [tex]\( \frac{3}{5} \)[/tex].
Similarly, converting [tex]\( \frac{3}{5} \)[/tex] to a common denominator of 25:
```
\frac{3}{5} = \frac{3 \times 5}{5 \times 5} = \frac{15}{25}
```
3. Lastly, let's compare [tex]\( \frac{15}{25} \)[/tex] to [tex]\( \frac{3}{5} \)[/tex].
Again, converting [tex]\( \frac{3}{5} \)[/tex] to a common denominator of 25:
```
\frac{3}{5} = \frac{3 \times 5}{5 \times 5} = \frac{15}{25}
```
Upon comparing:
- [tex]\( \frac{15}{25} = \frac{15}{25} \)[/tex]
Thus, it is evident that [tex]\( \frac{15}{25} \)[/tex] is equivalent to [tex]\( \frac{3}{5} \)[/tex].
So, the answer is:
[tex]\( \frac{15}{25} \)[/tex]
Therefore, option 3 is the correct answer.
1. First, let's compare [tex]\( \frac{18}{25} \)[/tex] to [tex]\( \frac{3}{5} \)[/tex].
We can convert both fractions to have a common denominator
```
\frac{3}{5} = \frac{3 \times 5}{5 \times 5} = \frac{15}{25}
```
2. Now, let's compare [tex]\( \frac{20}{25} \)[/tex] to [tex]\( \frac{3}{5} \)[/tex].
Similarly, converting [tex]\( \frac{3}{5} \)[/tex] to a common denominator of 25:
```
\frac{3}{5} = \frac{3 \times 5}{5 \times 5} = \frac{15}{25}
```
3. Lastly, let's compare [tex]\( \frac{15}{25} \)[/tex] to [tex]\( \frac{3}{5} \)[/tex].
Again, converting [tex]\( \frac{3}{5} \)[/tex] to a common denominator of 25:
```
\frac{3}{5} = \frac{3 \times 5}{5 \times 5} = \frac{15}{25}
```
Upon comparing:
- [tex]\( \frac{15}{25} = \frac{15}{25} \)[/tex]
Thus, it is evident that [tex]\( \frac{15}{25} \)[/tex] is equivalent to [tex]\( \frac{3}{5} \)[/tex].
So, the answer is:
[tex]\( \frac{15}{25} \)[/tex]
Therefore, option 3 is the correct answer.