7. The determinant of the matrix [tex]\(A=\frac{1}{2}\left(\begin{array}{ccc}k / 2 & 9 / 2 & 1 \\ 1 & k & 0 \\ 5 & -1 & 1\end{array}\right)\)[/tex] is:

(a) [tex]\(|A|=\frac{1}{8}\left(-2 k^2 - 3 k + 5\right)\)[/tex].

(b) [tex]\(|A|=\frac{1}{2}\left(-2 k^2 - 9 k + 11\right)\)[/tex].

(c) [tex]\(|A|=\frac{1}{16}\left(k^2 - 10 k - 11\right)\)[/tex].

(d) None of the above answers.

8. Let [tex]\(B=\left(\begin{array}{ccc}1 & k & 4 \\ 1 & 1 & 1 \\ -1 & -1 & 1\end{array}\right)\)[/tex]. The matrix [tex]\(AB\)[/tex] is not invertible (is singular) if and only if:

(a) [tex]\(k=-1\)[/tex] or [tex]\(k=11\)[/tex] or [tex]\(k=1\)[/tex].

(b) [tex]\(k=1\)[/tex] or [tex]\(k=11\)[/tex] or [tex]\(k=2\)[/tex].

(c) [tex]\(k=-1\)[/tex] or [tex]\(k=-11\)[/tex] or [tex]\(k=0\)[/tex].

(d) None of the above answers.

9. Let [tex]\(A=\left(\begin{array}{ccc}1 & -6 & 0 \\ -1 & 2 & -3 \\ 0 & 0 & -1\end{array}\right)\)[/tex]. Calculating the characteristic polynomial of [tex]\(A\)[/tex], we find that [tex]\(A\)[/tex] admits a double eigenvalue [tex]\(\lambda_1\)[/tex] and another simple eigenvalue [tex]\(\lambda_2\)[/tex] with:

(a) [tex]\(\lambda_1=1\)[/tex] and [tex]\(\lambda_2=4\)[/tex].

(b) [tex]\(\lambda_1=-1\)[/tex] and [tex]\(\lambda_2=-4\)[/tex].

(c) [tex]\(\lambda_1=-1\)[/tex] and [tex]\(\lambda_2=4\)[/tex].

(d) None of the above answers.

10. The set of solutions of the system [tex]\(\left(A-\lambda_1 I\right) u=0\)[/tex] is:

(a) [tex]\(\{\alpha(3, -1, 0) ; \alpha \in \mathbb{R}\}\)[/tex].

(b) [tex]\(\{\alpha(3, 1, 0) ; \alpha \in \mathbb{R}\}\)[/tex].

(c) [tex]\(\{\alpha(3, 2, 0) + \beta(2, 1, 0) ; \alpha, \beta \in \mathbb{R}\}\)[/tex].

(d) None of the above answers.

11. The set of solutions of the system [tex]\(\left(A-\lambda_2 I\right) v=0\)[/tex] is:

(a) [tex]\(\{\alpha(2, 1, 1) ; \alpha \in \mathbb{R}\}\)[/tex].

(b) [tex]\(\{\alpha(3, 1, 1) ; \alpha \in \mathbb{R}\}\)[/tex].

(c) [tex]\(\{\alpha(2, -1, 0) ; \alpha \in \mathbb{R}\}\)[/tex].

(d) None of the above answers.

12. We deduce from questions (10) and (11) that:

(a) [tex]\(A\)[/tex] is not diagonalizable.

(b) [tex]\(A\)[/tex] is diagonalizable and for [tex]\(P=\left(\begin{array}{ccc}-2 & 3 & 3 \\ 1 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)\)[/tex] we have [tex]\(P^{-1}AP=\left(\begin{array}{ccc}\lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2\end{array}\right)\)[/tex].

(c) [tex]\(A\)[/tex] is diagonalizable and for [tex]\(P=\left(\begin{array}{ccc}2 & 3 & 3 \\ -1 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)\)[/tex] we have [tex]\(P^{-1}AP=\left(\begin{array}{ccc}\lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2\end{array}\right)\)[/tex].

(d) None of the above answers.



Answer :

Let's go through the solutions to each question one by one.

### Question 7

We need to find the determinant of the matrix [tex]\( A = \frac{1}{2} \left( \begin{array}{ccc} \frac{k}{2} & \frac{9}{2} & 1 \\ 1 & k & 0 \\ 5 & -1 & 1 \end{array} \right) \)[/tex].

First, simplify the matrix:
[tex]\[ A = \frac{1}{2} \left( \begin{array}{ccc} \frac{k}{2} & \frac{9}{2} & 1 \\ 1 & k & 0 \\ 5 & -1 & 1 \end{array} \right) = \left( \begin{array}{ccc} \frac{k}{4} & \frac{9}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{k}{2} & 0 \\ \frac{5}{2} & -\frac{1}{2} & \frac{1}{2} \end{array} \right) \][/tex]

We can calculate the determinant using cofactor expansion along the first row.
So,
[tex]\[ |A| = \frac{k}{4} \left( \frac{k}{2} \cdot \frac{1}{2} - 0 \cdot -\frac{1}{2} \right) - \frac{9}{4} \left( \frac{1}{2} \cdot \frac{1}{2} - 0 \cdot \frac{5}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \cdot -\frac{1}{2} - \frac{k}{2} \cdot \frac{5}{2} \right) \][/tex]

Simplify each of the terms for ease:
[tex]\[ \frac{k}{4} \left( \frac{k}{4} \right) - \frac{9}{4} \left( \frac{1}{4} \right) + \frac{1}{2} \left( -\frac{1}{4} - \frac{5k}{4} \right) = \frac{k^2}{16} - \frac{9}{16} + \frac{1}{2} \left( -\frac{1}{4} - \frac{5k}{4} \right) = \frac{k^2}{16} - \frac{9}{16} + \left( -\frac{1}{8} - \frac{5k}{8} \right) = \frac{k^2}{16} - \frac{9}{16} - \frac{1}{8} - \frac{5k}{8} = \frac{k^2 - 10k - 11}{16} \][/tex]

Thus, the correct answer is:
[tex]\[ (c) \ |A| = \frac{1}{16}(k^2 - 10k - 11) \][/tex]

### Question 8
Matrix [tex]\(B\)[/tex] needs to be singular (non-invertible), which means its determinant should be zero:
[tex]\[ B = \left( \begin{array}{ccc} 1 & k & 4 \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{array} \right) \][/tex]

Calculating the determinant of [tex]\( B \)[/tex]:
[tex]\[ |B|= 1\left(1 \cdot 1 - 1(-1) \right) - k\left(1 \cdot 1 - 1(-1) \right) + 4\left(1 \cdot (-1) - 1(-1)\right) = 1(2) - k(2) + 4(0) = 2 - 2k \][/tex]

Set the determinant to zero for the matrix to be singular:
[tex]\[ 2 - 2k = 0 \implies k = 1 \][/tex]

However, the options provided do not match. This implies there's a missing investigation or misinterpretion.
None of the given options matches.

### Question 9
Given [tex]\( A = \left( \begin{array}{ccc} 1 & -6 & 0 \\ -1 & 2 & -3 \\ 0 & 0 & -1 \end{array} \right) \)[/tex], we calculate the characteristic polynomial:

[tex]\[ |A - \lambda I| = \left| \begin{array}{ccc} 1 - \lambda & -6 & 0 \\ -1 & 2 - \lambda & -3 \\ 0 & 0 & -1 - \lambda \end{array} \right| \][/tex]

Expanding the determinant:
[tex]\[ (1-\lambda) \left| \begin{array}{cc} 2-\lambda & -3 \\ 0 & -1-\lambda \end{array} \right| - (-6) \left| \begin{array}{cc} -1 & -3 \\ 0 & -1-\lambda \end{array} \right| \][/tex]
[tex]\[ (1-\lambda) [(2-\lambda)(-1-\lambda)] - (-6) (-1) = (1-\lambda) (\lambda^2 - \lambda - 2) - 6 = \lambda^3 - \lambda^2 - 2\lambda - \lambda^2 + \lambda + 2 -6 =0 = \lambda^3 - 2 \lambda^2 -1 \lambda -4 = (\lambda +1, \lambda +1,\lambda -2) \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{(c) \ \lambda_1=-1, \text{ a double eigenvalue and } \lambda_2 = - 4} ] ### Question 10 The \((A-\lambda_1 I) u = 0\) Given \(\lambda_1 = -1\): \[A-(\lambda_{1}I) = \left( \begin{array}{ccc} 2 & -6 & 0 \\ -1 & 3 & -3 \\ 0 & 0 & 0 \end{array} \right)\][/tex]

Row reduce to get:
[tex]\[ u \to (\alpha (3, 1 , 0), alpha \in R)\][/tex]

The corresponding eigenvevctor is 3,1,0
\boxed{ (Final answer alpha(c) 3,1,0) none of the answer matches }]

### Question 11
Given [tex]\(A(A-\lambda_2)X=0\)[/tex] where [tex]\(\lambda_2=4\)[/tex]
\[
A-\lambda_2(X)=x0
Nullifying the third row : for \lambda2 there are
(2, -1,0)

So:
\[ \boxed{(a) -(2,1,1);ivial function [}