17. Applying the elementary operations, we find that:

(a) [tex]\[(A \mid b) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & m+1 \\ 0 & -3 & m & -1 \\ 0 & 0 & (m-3)(m+4) & 2(m+4) \end{array}\right)\][/tex]

(b) [tex]\[(A \mid b) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & m+1 \\ 0 & -3 & m & -1 \\ 0 & 0 & (m+3)(m-4) & -2(m-4) \end{array}\right)\][/tex]

(c) [tex]\[(A \mid b) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & m+1 \\ 0 & -3 & m & -1 \\ 0 & 0 & (m-3)(m+4) & m-3 \end{array}\right)\][/tex]

(d) None of the above answers.

18. (S) admits a unique solution if:

(a) [tex]\( m \neq -3 \)[/tex] and [tex]\( m \neq 4 \)[/tex].

(b) [tex]\( m \neq 3 \)[/tex] and [tex]\( m \neq -4 \)[/tex].

(c) [tex]\( m \neq -3 \)[/tex] and [tex]\( m \neq -4 \)[/tex].

(d) None of the above answers.

19. (S) does not admit solutions for:

(a) [tex]\( m = 3 \)[/tex].

(b) [tex]\( m = 4 \)[/tex].

(c) [tex]\( m = -4 \)[/tex].

(d) None of the above answers.

20. (S) admits an infinity of solutions if:

(a) [tex]\( m = 4 \)[/tex] and in this case [tex]\( y = \frac{1-4z}{3} \)[/tex] and [tex]\( x = -\frac{z-12}{3} \)[/tex].

(b) [tex]\( m = -4 \)[/tex] and in this case [tex]\( y = \frac{1-4z}{3} \)[/tex] and [tex]\( x = \frac{z-10}{3} \)[/tex].

(c) [tex]\( m = 3 \)[/tex] and in this case [tex]\( y = \frac{1-4z}{3} \)[/tex] and [tex]\( x = \frac{z-12}{3} \)[/tex].

(d) None of the above answers.



Answer :

Let's go through each question step by step based on the solutions derived.

### Question 17: Elementary Operations on the Augmented Matrix

Given the options:
(a) [tex]\(\left(\begin{array}{ccc|c} 1 & 1 & 1 & m+1 \\ 0 & -3 & m & -1 \\ 0 & 0 & (m-3)(m+4) & 2(m+4) \end{array}\right)\)[/tex]

(b) [tex]\(\left(\begin{array}{ccc|c} 1 & 1 & 1 & m+1 \\ 0 & -3 & m & -1 \\ 0 & 0 & (m+3)(m-4) & -2(m-4) \end{array}\right)\)[/tex]

(c) [tex]\(\left(\begin{array}{ccc|c} 1 & 1 & 1 & m+1 \\ 0 & -3 & m & -1 \\ 0 & 0 & (m-3)(m+4) & m-3 \end{array}\right)\)[/tex]

From the given answer, the correct transformation of the matrix is:
[tex]\[ \left(\begin{array}{ccc|c} 1 & 1 & 1 & m+1 \\ 0 & -3 & m & -1 \\ 0 & 0 & (m-3)(m+4) & 2(m+4) \end{array}\right) \][/tex]

Thus, the correct choice is:
(a)

### Question 18: Whether the System (S) Admits a Unique Solution

A system admits a unique solution if the determinant of matrix [tex]\(A\)[/tex] is not zero. The conditions for this to happen are given as:
(a) [tex]\(m \neq -3\)[/tex] and [tex]\(m \neq 4\)[/tex]

(b) [tex]\(m \neq 3\)[/tex] and [tex]\(m \neq -4\)[/tex]

(c) [tex]\(m \neq -3\)[/tex] and [tex]\(m \neq -4\)[/tex]

From the given answer, the unique solution conditions are:
[tex]\(m \neq -4\)[/tex] and [tex]\(m \neq 3\)[/tex]

Thus, the correct choice is:
(b)

### Question 19: When the System (S) Does Not Admit Solutions

A system does not admit solutions if a row reduces to [tex]\(0 = k\)[/tex] where [tex]\(k\)[/tex] is non-zero. Based on the solutions:
(a) [tex]\(m = 3\)[/tex]

(b) [tex]\(m = 4\)[/tex]

(c) [tex]\(m = -4\)[/tex]

From the given answer, the conditions when the system does not admit solutions are:
[tex]\(m = 3\)[/tex]

Thus, the correct choice is:
(a)

### Question 20: When the System (S) Admits an Infinity of Solutions

A system admits infinity of solutions when there is a free variable, typically due to a row reducing to all zeros in [tex]\(A\)[/tex] and corresponding entry in [tex]\(b\)[/tex] also being zero. Based on the solutions:
(a) [tex]\(m = 4\)[/tex] and [tex]\(y = \frac{1 - 4z}{3}\)[/tex] and [tex]\(x = -\frac{z - 12}{3}\)[/tex]

(b) [tex]\(m = -4\)[/tex] and [tex]\(y = \frac{1 - 4z}{3}\)[/tex] and [tex]\(x = \frac{z - 10}{3}\)[/tex]

(c) [tex]\(m = 3\)[/tex] and [tex]\(y = \frac{1 - 4z}{3}\)[/tex] and [tex]\(x = \frac{z - 12}{3}\)[/tex]

From the given answer, the conditions for an infinity of solutions are:
[tex]\(m = 4\)[/tex] and [tex]\(y = \frac{1 - 4z}{3}\)[/tex] and [tex]\(x = -\frac{z - 12}{3}\)[/tex]

Thus, the correct choice is:
(a)

---

In summary, the answers are:
- Q17: (a)
- Q18: (b)
- Q19: (a)
- Q20: (a)