The concentration [tex]\( C(t) \)[/tex] of a certain drug in the bloodstream after [tex]\( t \)[/tex] minutes is given by the formula

[tex]\[ C(t)=0.05\left(1-e^{-0.2 t}\right) \][/tex]

What is the concentration after 9 minutes? Round to three decimal places.



Answer :

To find the concentration [tex]\( C(t) \)[/tex] of the drug in the bloodstream after 9 minutes using the given formula, [tex]\( C(t) = 0.05 \left( 1 - e^{-0.2t} \right) \)[/tex], follow these steps:

1. Substitute the value of [tex]\( t \)[/tex] into the formula:
The given time is [tex]\( t = 9 \)[/tex] minutes. Substitute [tex]\( t = 9 \)[/tex] into the equation:
[tex]\[ C(9) = 0.05 \left( 1 - e^{-0.2 \cdot 9} \right) \][/tex]

2. Calculate the exponent:
Calculate [tex]\( -0.2 \cdot 9 \)[/tex]:
[tex]\[ -0.2 \cdot 9 = -1.8 \][/tex]

3. Evaluate the exponential function:
Calculate [tex]\( e^{-1.8} \)[/tex]:
[tex]\[ e^{-1.8} \approx 0.16529888822158656 \][/tex]

4. Subtract the result from 1:
Substitute the value of [tex]\( e^{-1.8} \)[/tex] back into the equation:
[tex]\[ 1 - e^{-1.8} = 1 - 0.16529888822158656 \approx 0.8347011117784134 \][/tex]

5. Multiply by 0.05:
Finally, multiply the result by 0.05:
[tex]\[ 0.05 \cdot 0.8347011117784134 \approx 0.041735055588920676 \][/tex]

6. Round to three decimal places:
Now, round the concentration to three decimal places:
[tex]\[ 0.041735055588920676 \approx 0.042 \][/tex]

Therefore, the concentration [tex]\( C(9) \)[/tex] of the drug in the bloodstream after 9 minutes is approximately [tex]\( \boxed{0.042} \)[/tex] (rounded to three decimal places).