Which set of numbers gives the correct possible values of [tex]n[/tex] for [tex]n = 3[/tex]?

A. [tex]0, 1, 2[/tex]
B. [tex]0, 1, 2, 3[/tex]
C. [tex]-2, -1, 0, 1, 2[/tex]
D. [tex]-3, -2, -1, 0, 1, 2, 3[/tex]



Answer :

Let's analyze the question to identify the correct set of possible values for a given condition where [tex]\( n = 3 \)[/tex].

The options provided are:
1. [tex]\( \{0, 1, 2\} \)[/tex]
2. [tex]\( \{0, 1, 2, 3\} \)[/tex]
3. [tex]\( \{-2, -1, 0, 1, 2\} \)[/tex]
4. [tex]\( \{-3, -2, -1, 0, 1, 2, 3\} \)[/tex]

In the context of the problem, we need to determine which set includes all the possible values of [tex]\( /\)[/tex] for [tex]\( n = 3 \)[/tex].

### Detailed Examination of Options:

1. Option 1: [tex]\( \{0, 1, 2\} \)[/tex]:
- This set only includes numbers from [tex]\( 0 \)[/tex] to [tex]\( 2 \)[/tex]. It misses several other potential values.

2. Option 2: [tex]\( \{0, 1, 2, 3\} \)[/tex]:
- This set includes numbers from [tex]\( 0 \)[/tex] to [tex]\( 3 \)[/tex], but it also misses negative values which can be possible.

3. Option 3: [tex]\( \{-2, -1, 0, 1, 2\} \)[/tex]:
- This set includes some negative values and some positive values but does not cover the entire range of possible outcomes as it misses [tex]\( -3 \)[/tex] and [tex]\( 3 \)[/tex].

4. Option 4: [tex]\( \{-3, -2, -1, 0, 1, 2, 3\} \)[/tex]:
- This set includes both negative and positive values as well as zero, covering the entire range from [tex]\( -3 \)[/tex] to [tex]\( 3 \)[/tex].

### Conclusion:

By examining all the provided options, we can conclude that the set which comprehensively includes all the possible values for [tex]\( /\)[/tex] when [tex]\( n = 3 \)[/tex] is the fourth option:

[tex]\[ \{-3, -2, -1, 0, 1, 2, 3\} \][/tex]

Therefore, the correct set of possible values is:

[tex]\[ \{-3, -2, -1, 0, 1, 2, 3\} \][/tex]