Answer :
To solve the given system of equations:
[tex]\[ \left\{\begin{array}{l} -3x + 4y + 5z = 13 \\ -6x - 4y - 2z = 14 \\ 12x - 4y + 2z = -10 \end{array}\right. \][/tex]
we will employ the method of row reduction to bring the augmented matrix to its reduced row echelon form (RREF).
### Step 1: Formulate the augmented matrix
We begin by writing the augmented matrix for the system of equations:
[tex]\[ \begin{pmatrix} -3 & 4 & 5 & | & 13 \\ -6 & -4 & -2 & | & 14 \\ 12 & -4 & 2 & | & -10 \end{pmatrix} \][/tex]
### Step 2: Perform row operations to obtain RREF
After performing several row operations to bring it to RREF, we end up with:
[tex]\[ \begin{pmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix} \][/tex]
### Step 3: Interpret the RREF matrix
Each row in the RREF corresponds to the following equations:
1. [tex]\(1x + 0y + 0z = -2\)[/tex]
2. [tex]\(0x + 1y + 0z = -2\)[/tex]
3. [tex]\(0x + 0y + 1z = 3\)[/tex]
From these equations, we directly read off the values for [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex]:
[tex]\[ x = -2 \][/tex]
[tex]\[ y = -2 \][/tex]
[tex]\[ z = 3 \][/tex]
### Conclusion
The solution to the system of equations is the unique ordered triple [tex]\( (x, y, z) = (-2, -2, 3) \)[/tex].
[tex]\[ \left\{\begin{array}{l} -3x + 4y + 5z = 13 \\ -6x - 4y - 2z = 14 \\ 12x - 4y + 2z = -10 \end{array}\right. \][/tex]
we will employ the method of row reduction to bring the augmented matrix to its reduced row echelon form (RREF).
### Step 1: Formulate the augmented matrix
We begin by writing the augmented matrix for the system of equations:
[tex]\[ \begin{pmatrix} -3 & 4 & 5 & | & 13 \\ -6 & -4 & -2 & | & 14 \\ 12 & -4 & 2 & | & -10 \end{pmatrix} \][/tex]
### Step 2: Perform row operations to obtain RREF
After performing several row operations to bring it to RREF, we end up with:
[tex]\[ \begin{pmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 3 \end{pmatrix} \][/tex]
### Step 3: Interpret the RREF matrix
Each row in the RREF corresponds to the following equations:
1. [tex]\(1x + 0y + 0z = -2\)[/tex]
2. [tex]\(0x + 1y + 0z = -2\)[/tex]
3. [tex]\(0x + 0y + 1z = 3\)[/tex]
From these equations, we directly read off the values for [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex]:
[tex]\[ x = -2 \][/tex]
[tex]\[ y = -2 \][/tex]
[tex]\[ z = 3 \][/tex]
### Conclusion
The solution to the system of equations is the unique ordered triple [tex]\( (x, y, z) = (-2, -2, 3) \)[/tex].