Answer :

To solve the problem, we need to utilize the given information that [tex]\((x + 5)\)[/tex] is a factor of the polynomial [tex]\( p(x) = x^3 - 20x + 5k \)[/tex]. This means that when [tex]\( x = -5 \)[/tex] is substituted into the polynomial, the result should be zero.

Here's the detailed step-by-step solution:

1. Substitute [tex]\( x = -5 \)[/tex] into [tex]\( p(x) \)[/tex]:
[tex]\[ p(-5) = (-5)^3 - 20(-5) + 5k \][/tex]

2. Simplify the expression:
[tex]\[ (-5)^3 = -125 \][/tex]
[tex]\[ -20(-5) = 100 \][/tex]
Therefore,
[tex]\[ p(-5) = -125 + 100 + 5k \][/tex]

3. Set the polynomial equal to zero because [tex]\((x + 5)\)[/tex] is a factor:
[tex]\[ -125 + 100 + 5k = 0 \][/tex]

4. Combine like terms:
[tex]\[ -125 + 100 = -25 \][/tex]
Therefore,
[tex]\[ -25 + 5k = 0 \][/tex]

5. Solve for [tex]\( k \)[/tex]:
[tex]\[ -25 + 5k = 0 \][/tex]
[tex]\[ 5k = 25 \][/tex]
[tex]\[ k = \frac{25}{5} \][/tex]
[tex]\[ k = 5 \][/tex]

So, the correct value of [tex]\( k \)[/tex] is [tex]\( 5 \)[/tex]. Hence, the answer is:
[tex]\[ \boxed{5} \][/tex]