Answer :
To determine the value of [tex]\( k \)[/tex] such that [tex]\( (x+1) \)[/tex] is a factor of the polynomial [tex]\( 2x^2 + kx \)[/tex], we can use the fact that if [tex]\( (x+1) \)[/tex] is a factor, then the polynomial will be zero when [tex]\( x = -1 \)[/tex].
1. Given the polynomial:
[tex]\[ 2x^2 + kx \][/tex]
2. Substitute [tex]\( x = -1 \)[/tex] into the polynomial:
[tex]\[ 2(-1)^2 + k(-1) \][/tex]
3. Simplify the expression:
[tex]\[ 2(1) + k(-1) = 2 - k \][/tex]
4. Since [tex]\( (x+1) \)[/tex] is a factor, the polynomial should be zero when [tex]\( x = -1 \)[/tex]:
[tex]\[ 2 - k = 0 \][/tex]
5. Solve for [tex]\( k \)[/tex]:
[tex]\[ k = 2 \][/tex]
Therefore, the value of [tex]\( k \)[/tex] is [tex]\(\boxed{2}\)[/tex].
So, the correct answer is:
c) 2
1. Given the polynomial:
[tex]\[ 2x^2 + kx \][/tex]
2. Substitute [tex]\( x = -1 \)[/tex] into the polynomial:
[tex]\[ 2(-1)^2 + k(-1) \][/tex]
3. Simplify the expression:
[tex]\[ 2(1) + k(-1) = 2 - k \][/tex]
4. Since [tex]\( (x+1) \)[/tex] is a factor, the polynomial should be zero when [tex]\( x = -1 \)[/tex]:
[tex]\[ 2 - k = 0 \][/tex]
5. Solve for [tex]\( k \)[/tex]:
[tex]\[ k = 2 \][/tex]
Therefore, the value of [tex]\( k \)[/tex] is [tex]\(\boxed{2}\)[/tex].
So, the correct answer is:
c) 2