Find all values of [tex]$n$[/tex] for which the equation has two real solutions.

[tex] 3u^2 - 6u = n + 1 [/tex]

Write your answer starting with [tex]$n$[/tex], followed by an equals sign or inequality symbol (for example, [tex][tex]$n \ \textless \ 5$[/tex][/tex]). Reduce all fractions.

[tex]\square[/tex]



Answer :

To determine for which values of [tex]\( n \)[/tex] the equation [tex]\( 3u^2 - 6u = n + 1 \)[/tex] has two real solutions, follow these detailed steps:

1. Rewrite the equation in standard quadratic form:
[tex]\[ 3u^2 - 6u - (n + 1) = 0 \][/tex]
This quadratic equation is in the form [tex]\( au^2 + bu + c = 0 \)[/tex], where [tex]\( a = 3 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = -(n + 1) \)[/tex].

2. Recall the condition for a quadratic equation to have two distinct real solutions:
A quadratic equation [tex]\( au^2 + bu + c = 0 \)[/tex] has two distinct real solutions if its discriminant is greater than zero. The discriminant [tex]\( \Delta \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]

3. Calculate the discriminant for the given quadratic equation:
[tex]\[ \Delta = (-6)^2 - 4 \cdot 3 \cdot -(n + 1) \][/tex]
Simplify the expression:
[tex]\[ \Delta = 36 + 12(n + 1) \][/tex]
[tex]\[ \Delta = 36 + 12n + 12 \][/tex]
[tex]\[ \Delta = 48 + 12n \][/tex]

4. Set up the inequality for the discriminant to be greater than zero:
[tex]\[ 48 + 12n > 0 \][/tex]

5. Solve the inequality for [tex]\( n \)[/tex]:
[tex]\[ 12n > -48 \][/tex]
[tex]\[ n > -4 \][/tex]

Therefore, the equation [tex]\( 3u^2 - 6u = n + 1 \)[/tex] will have two real solutions for values of [tex]\( n \)[/tex] that satisfy:

[tex]\[ n > -4 \][/tex]