Make [tex]y[/tex] the subject of the formula
[tex]\[ w = x - 2 y z^2 \][/tex]

Choose the correct answer.
A. [tex]y = \frac{x}{2 z^2} - w[/tex]
B. [tex]y = \frac{x - w}{2 z^2}[/tex]
C. [tex]y = x - \frac{w}{2 z^2}[/tex]
D. [tex]y = \frac{w - x}{2 z^2}[/tex]
E. [tex]y = \frac{w}{x} + 2 z^2[/tex]



Answer :

To make [tex]\( y \)[/tex] the subject of the formula given by the equation [tex]\( w = x - 2yz^2 \)[/tex], follow these detailed steps:

1. Start with the given equation:
[tex]\[ w = x - 2yz^2 \][/tex]

2. Isolate the term involving [tex]\( y \)[/tex]:
- Move [tex]\( x \)[/tex] to the left side by subtracting [tex]\( x \)[/tex] from both sides:
[tex]\[ w - x = -2yz^2 \][/tex]

3. Eliminate the negative sign from [tex]\( -2yz^2 \)[/tex]:
- Multiply both sides by [tex]\( -1 \)[/tex]:
[tex]\[ x - w = 2yz^2 \][/tex]

4. Solve for [tex]\( y \)[/tex]:
- Divide both sides by [tex]\( 2z^2 \)[/tex] to isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x - w}{2z^2} \][/tex]

Thus, the correct expression for [tex]\( y \)[/tex] as the subject of the formula is:
[tex]\[ y = \frac{x - w}{2z^2} \][/tex]

Therefore, the correct option is:

B: [tex]\( y = \frac{x - w}{2z^2} \)[/tex]