Answer :

Let's prove the given trigonometric identity:

[tex]\[ 2 \cos 8A + 1 = (2 \cos 2A + 1)(2 \cos 2A - 1)(2 \cos 4A - 1) \][/tex]

We will utilize trigonometric identities to simplify and illustrate the steps.

### Step 1: Utilize the double angle and multiple angle identities
First, recall the identities for cosine involving double angles.

[tex]\[ \cos(4\theta) = 2\cos^2(2\theta) - 1 \][/tex]

[tex]\[ \cos(8\theta) = 2\cos^2(4\theta) - 1 \][/tex]

### Step 2: Write [tex]\(\cos(8A)\)[/tex] in terms of [tex]\(\cos(4A)\)[/tex]

[tex]\[ 2 \cos 8A = 2 (2 \cos^2 4A - 1) = 4 \cos^2 4A - 2 \][/tex]

Adding 1 to both sides:

[tex]\[ 2 \cos 8A + 1 = 4 \cos^2 4A - 1 \][/tex]

### Step 3: Write [tex]\(\cos(4A)\)[/tex] in terms of [tex]\(\cos(2A)\)[/tex]

Using the identity:

[tex]\[ \cos 4A = 2 \cos^2 2A - 1 \][/tex]

We can plug this into our expression for [tex]\(\cos(4A)\)[/tex]:

[tex]\[ 2 \cos 4A = 2(2 \cos^2 2A - 1) = 4 \cos^2 2A - 2 \][/tex]

### Step 4: Square [tex]\(\cos(4A)\)[/tex] expression

Now we have:

[tex]\[ 4 \cos^2 4A = 4 (2 \cos^2 2A - 1)^2 = 4(4 \cos^4 2A - 4 \cos^2 2A + 1) = 16 \cos^4 2A - 16 \cos^2 2A + 4 \][/tex]

So:

[tex]\[ 4 \cos^2 4A - 1 = 16 \cos^4 2A - 16 \cos^2 2A + 3 \][/tex]

### Step 5: Expand the right-hand side (RHS)

We want to compare this to the expanded form of the RHS:

[tex]\[ (2 \cos 2A + 1)(2 \cos 2A - 1)(2 \cos 4A - 1) \][/tex]

First, consider just [tex]\((2 \cos 2A + 1)(2 \cos 2A - 1)\)[/tex]:

[tex]\[ (2 \cos 2A + 1)(2 \cos 2A - 1) = 4 \cos^2 2A - 1 \][/tex]

Now multiply this by [tex]\((2 \cos 4A - 1)\)[/tex]:

[tex]\[ (4 \cos^2 2A - 1)(2 \cos 4A - 1) \][/tex]

Rewrite this as:

[tex]\[ (4 \cos^2 2A - 1)(4 \cos^2 2A - 2) = 16 \cos^4 2A - 4 \cos^2 2A - 2 (4 \cos^2 2A - 1) + 1 = 16 \cos^4 2A - 8 \cos^2 2A + 1 \][/tex]

### Step 6: Equating both sides

Now we have the right-hand side equal to:

[tex]\[ 16 \cos^4 2A - 8 \cos^2 2A + 1 \][/tex]

This confirms:

[tex]\[ 2 \cos 8A + 1 = (2 \cos 2A + 1)(2 \cos 2A - 1)(2 \cos 4A - 1) \][/tex]

Thus, the given trigonometric identity has been successfully proven.