Answer :

To verify that [tex]\( x = 4 \)[/tex] is a solution to the equation

[tex]\[ x + 7 - \frac{8x}{3} = \frac{17}{6} - \frac{5x}{8} + 1, \][/tex]

we will substitute [tex]\( x = 4 \)[/tex] into both sides of the equation and check if both sides are equal.

Step 1: Substitute [tex]\( x = 4 \)[/tex] into the left-hand side of the equation

[tex]\[ \text{Left side: } x + 7 - \frac{8x}{3} \][/tex]

Substitute [tex]\( x = 4 \)[/tex]:

[tex]\[ 4 + 7 - \frac{8 \cdot 4}{3} \][/tex]

Calculate each term individually:

[tex]\[ 4 + 7 = 11 \][/tex]
[tex]\[ \frac{8 \cdot 4}{3} = \frac{32}{3} \][/tex]

So the left-hand side simplifies to:

[tex]\[ 11 - \frac{32}{3} \][/tex]

Combine the terms by converting 11 to a fraction with a common denominator:

[tex]\[ 11 = \frac{33}{3} \][/tex]

Thus:

[tex]\[ \frac{33}{3} - \frac{32}{3} = \frac{33 - 32}{3} = \frac{1}{3} \][/tex]

Step 2: Substitute [tex]\( x = 4 \)[/tex] into the right-hand side of the equation

[tex]\[ \text{Right side: } \frac{17}{6} - \frac{5x}{8} + 1 \][/tex]

Substitute [tex]\( x = 4 \)[/tex]:

[tex]\[ \frac{17}{6} - \frac{5 \cdot 4}{8} + 1 \][/tex]

Calculate each term individually:

[tex]\[ \frac{5 \cdot 4}{8} = \frac{20}{8} = \frac{5}{2} \][/tex]
[tex]\[ 1 = \frac{6}{6} \][/tex]

So substitute these values:

[tex]\[ \frac{17}{6} - \frac{5}{2} + 1 = \frac{17}{6} - \frac{5}{2} + \frac{6}{6} \][/tex]

To combine these fractions, convert them to a common denominator (which is 6):

[tex]\[ \frac{5}{2} = \frac{15}{6} \][/tex]
[tex]\[ 1 = \frac{6}{6} \][/tex]

So the right-hand side is:

[tex]\[ \frac{17}{6} - \frac{15}{6} + \frac{6}{6} = \frac{17 - 15 + 6}{6} = \frac{8}{6} = \frac{4}{3} \][/tex]

Comparing both sides:

Left-hand side: [tex]\(\frac{1}{3}\)[/tex]

Right-hand side: [tex]\(\frac{4}{3}\)[/tex]

Clearly:

[tex]\[ \frac{1}{3} \neq \frac{4}{3} \][/tex]

Thus, substituting [tex]\( x = 4 \)[/tex] into the equation does not yield an equality; hence [tex]\( x = 4 \)[/tex] is not a solution to the given equation.