Answer :

Sure! Let's solve the system of equations using the elimination method. We have the following system of equations:

[tex]\[ \begin{cases} x + 2y = 3 & \text{(Equation 1)} \\ -x + y = 3 & \text{(Equation 2)} \end{cases} \][/tex]

Step 1: Add the two equations together to eliminate [tex]\( x \)[/tex]

When we add Equation 1 and Equation 2 directly, we get:

[tex]\[ (x + 2y) + (-x + y) = 3 + 3 \][/tex]

Simplify the left side:

[tex]\[ x - x + 2y + y = 6 \][/tex]

This reduces to:

[tex]\[ 3y = 6 \][/tex]

Step 2: Solve for [tex]\( y \)[/tex]

Divide both sides of the equation by 3:

[tex]\[ y = \frac{6}{3} \][/tex]

Thus:

[tex]\[ y = 2 \][/tex]

Step 3: Substitute [tex]\( y = 2 \)[/tex] back into one of the original equations to solve for [tex]\( x \)[/tex]

We will use Equation 2 to find [tex]\( x \)[/tex]:

[tex]\[ -x + y = 3 \][/tex]

Substitute [tex]\( y = 2 \)[/tex] into the equation:

[tex]\[ -x + 2 = 3 \][/tex]

Subtract 2 from both sides:

[tex]\[ -x = 3 - 2 \][/tex]

This simplifies to:

[tex]\[ -x = 1 \][/tex]

Step 4: Solve for [tex]\( x \)[/tex]

Multiply both sides by -1 to isolate [tex]\( x \)[/tex]:

[tex]\[ x = -1 \][/tex]

Final Solution:

The solution to the system of equations is:

[tex]\[ (x, y) = (-1, 2) \][/tex]

So, [tex]\( x = -1 \)[/tex] and [tex]\( y = 2 \)[/tex].