The line [tex]mx + y + 1 = 0[/tex] is tangent to the parabola [tex]y^2 = -6x[/tex] if:

(a) [tex]m = 1[/tex]
(b) [tex]m = \frac{3}{2}[/tex]
(c) [tex]m = 0[/tex]
(d) [tex]m = ?[/tex]



Answer :

To determine the value of [tex]\( m \)[/tex] for which the line [tex]\( mx + y + 1 = 0 \)[/tex] is tangent to the parabola [tex]\( y^2 = -6x \)[/tex], follow these steps.

1. Express [tex]\( y \)[/tex] from the line equation:

Given the line equation:
[tex]\[ mx + y + 1 = 0 \][/tex]
solve for [tex]\( y \)[/tex]:
[tex]\[ y = -mx - 1 \][/tex]

2. Substitute [tex]\( y \)[/tex] in the parabola equation:

Given the parabola equation:
[tex]\[ y^2 = -6x \][/tex]
substitute [tex]\( y = -mx - 1 \)[/tex] into this equation:
[tex]\[ (-mx - 1)^2 = -6x \][/tex]

3. Expand and simplify the equation:

Expanding the left-hand side:
[tex]\[ (mx + 1)^2 = m^2x^2 + 2mx + 1 \][/tex]
So the equation becomes:
[tex]\[ m^2x^2 + 2mx + 1 = -6x \][/tex]

4. Combine like terms:

Rearrange the equation to combine all terms on one side:
[tex]\[ m^2x^2 + (2m + 6)x + 1 = 0 \][/tex]

5. Determine when the line is tangent to the parabola:

For the line to be tangent to the parabola, the quadratic equation in [tex]\( x \)[/tex]:
[tex]\[ m^2x^2 + (2m + 6)x + 1 = 0 \][/tex]
must have exactly one solution. This happens when the discriminant of the quadratic equation is zero.

The discriminant [tex]\( \Delta \)[/tex] of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
For our equation, [tex]\( a = m^2 \)[/tex], [tex]\( b = 2m + 6 \)[/tex], and [tex]\( c = 1 \)[/tex]. The discriminant is:
[tex]\[ \Delta = (2m + 6)^2 - 4(m^2)(1) \][/tex]

6. Set the discriminant to zero:

Set the discriminant to zero and solve for [tex]\( m \)[/tex]:
[tex]\[ (2m + 6)^2 - 4m^2 = 0 \][/tex]
[tex]\[ 4m^2 + 24m + 36 - 4m^2 = 0 \][/tex]
[tex]\[ 24m + 36 = 0 \][/tex]
[tex]\[ 24m = -36 \][/tex]
[tex]\[ m = -\frac{36}{24} \][/tex]
[tex]\[ m = -\frac{3}{2} \][/tex]

Thus, the value of [tex]\( m \)[/tex] for which the line [tex]\( mx + y + 1 = 0 \)[/tex] is tangent to the parabola [tex]\( y^2 = -6x \)[/tex] is [tex]\(-\frac{3}{2}\)[/tex].

Therefore, the correct answer is:
[tex]\[ (b) \quad m = -\frac{3}{2} \][/tex]