Answer :

Answer:

Pressure = 0.592 atm

Explanation:

To find the pressure of the CO2 gas in the cylinder, you can use the Ideal Gas Law:

=

PV=nRT

where:

P = pressure (in atm)

V = volume (in liters)

n = number of moles of gas

R = ideal gas constant (0.0821 L·atm/(K·mol))

T = temperature (in Kelvin)

Steps to solve:

Calculate the number of moles (

n) of CO2:

First, find the molar mass of CO2. The atomic masses are:

Carbon (C) = 12.01 g/mol

Oxygen (O) = 16.00 g/mol

Molar mass of CO2 = 12.01 + 2 × 16.00 = 44.01 g/mol

Number of moles (

n) is calculated by:

=

mass

molar mass

n=

molar mass

mass

=

18.7

 g

44.01

 g/mol

n=

44.01 g/mol

18.7 g

0.425

 mol

n≈0.425 mol

Use the Ideal Gas Law to find the pressure:

Rearrange the Ideal Gas Law to solve for

P:

=

P=

V

nRT

Plug in the values:

=

0.425

 mol

n=0.425 mol

=

0.0821

 L

\cdotp

atm/(K

\cdotp

mol)

R=0.0821 L\cdotpatm/(K\cdotpmol)

=

455

 K

T=455 K

=

26.5

 L

V=26.5 L

=

0.425

×

0.0821

×

455

26.5

P=

26.5

0.425×0.0821×455

15.690

26.5

P≈

26.5

15.690

0.592

 atm

P≈0.592 atm