Use the quadratic equation to solve this equation:

[tex]\[
b^2 - 4b - 14 = -2
\][/tex]

[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]



Answer :

Certainly! Let's solve the quadratic equation step by step:

1. Rewrite the equation into standard quadratic form:

Original equation:
[tex]\[ b^2 - 4b - 14 = -2 \][/tex]

Add 2 to both sides to get:
[tex]\[ b^2 - 4b - 14 + 2 = 0 \][/tex]

Simplify:
[tex]\[ b^2 - 4b - 12 = 0 \][/tex]

This is now in the standard quadratic form [tex]\(Ax^2 + Bx + C = 0\)[/tex] where [tex]\(A = 1\)[/tex], [tex]\(B = -4\)[/tex], and [tex]\(C = -12\)[/tex].

2. Identify the coefficients:
[tex]\[ A = 1, \quad B = -4, \quad C = -12 \][/tex]

3. Calculate the discriminant:

The discriminant [tex]\(\Delta\)[/tex] is given by:
[tex]\[ \Delta = B^2 - 4AC \][/tex]

Substitute the values:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot (-12) \][/tex]

Simplify:
[tex]\[ \Delta = 16 + 48 = 64 \][/tex]

4. Find the roots using the quadratic formula:

The roots of the quadratic equation [tex]\(Ax^2 + Bx + C = 0\)[/tex] are given by:
[tex]\[ x = \frac{-B \pm \sqrt{\Delta}}{2A} \][/tex]

Substitute [tex]\(A\)[/tex], [tex]\(B\)[/tex], and the discriminant [tex]\(\Delta\)[/tex]:
[tex]\[ x = \frac{-(-4) \pm \sqrt{64}}{2 \cdot 1} \][/tex]

Simplify:
[tex]\[ x = \frac{4 \pm 8}{2} \][/tex]

5. Calculate the two possible roots:

First root:
[tex]\[ x_1 = \frac{4 + 8}{2} = \frac{12}{2} = 6 \][/tex]

Second root:
[tex]\[ x_2 = \frac{4 - 8}{2} = \frac{-4}{2} = -2 \][/tex]

6. Summarize the results:

The discriminant is:
[tex]\[ \Delta = 64 \][/tex]

The roots are:
[tex]\[ x_1 = 6 \quad \text{and} \quad x_2 = -2 \][/tex]

Therefore, the solutions to the equation [tex]\(b^2 - 4b - 14 = -2\)[/tex] are [tex]\(b = 6\)[/tex] and [tex]\(b = -2\)[/tex].