What is the product?

[tex]\[
(3a^2b^7)(5a^3b^8)
\][/tex]

A. [tex]\(8a^5b^{15}\)[/tex]
B. [tex]\(8a^6b^{56}\)[/tex]
C. [tex]\(15a^5b^{15}\)[/tex]
D. [tex]\(15a^5b^{56}\)[/tex]



Answer :

To determine the product of the given expression [tex]\((3 a^2 b^7)(5 a^3 b^8)\)[/tex], let's break it down step by step.

1. Multiply the Coefficients:
- The coefficient of the first term is 3.
- The coefficient of the second term is 5.
- Multiply the coefficients: [tex]\(3 \times 5 = 15\)[/tex].

2. Combine the Exponents of 'a':
- For [tex]\(a\)[/tex], the exponent in the first term is 2.
- The exponent in the second term is 3.
- Add the exponents together: [tex]\(2 + 3 = 5\)[/tex].

3. Combine the Exponents of 'b':
- For [tex]\(b\)[/tex], the exponent in the first term is 7.
- The exponent in the second term is 8.
- Add the exponents together: [tex]\(7 + 8 = 15\)[/tex].

Putting it all together, the product of the expression is:
[tex]\[ 15 a^5 b^{15} \][/tex]

Thus, the correct answer is:
[tex]\[ 15 a^5 b^{15} \][/tex]