Certainly! Let's solve the expression step by step.
We are given the expression:
[tex]\[ 4(a + 2) + 3(a - 5) \][/tex]
### Step 1: Expand the expressions inside the parentheses
To do this, distribute the 4 and 3 to each term within their respective parentheses:
[tex]\[ 4(a + 2) = 4 \cdot a + 4 \cdot 2 = 4a + 8 \][/tex]
[tex]\[ 3(a - 5) = 3 \cdot a + 3 \cdot (-5) = 3a - 15 \][/tex]
### Step 2: Combine the expanded expressions
Now that we have expanded both expressions, let's combine them:
[tex]\[ 4(a + 2) + 3(a - 5) = (4a + 8) + (3a - 15) \][/tex]
### Step 3: Combine like terms
Next, we add the coefficients of [tex]\(a\)[/tex] together and the constants together:
[tex]\[ (4a + 3a) + (8 - 15) \][/tex]
Combine the terms:
[tex]\[ 7a - 7 \][/tex]
### Final Answer
The simplified expression is:
[tex]\[ 7a - 7 \][/tex]