Calculate the accrued interest (in \[tex]$) and the total purchase price (in \$[/tex]) of the bond purchase. (Round your answers to the nearest cent.)

\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline
Company & \begin{tabular}{c}
Coupon \\
Rate
\end{tabular} & \begin{tabular}{c}
Market \\
Price
\end{tabular} & \begin{tabular}{c}
Time \\
Since Last \\
Interest
\end{tabular} & \begin{tabular}{c}
Accrued \\
Interest
\end{tabular} & \begin{tabular}{c}
Commission \\
per Bond
\end{tabular} & \begin{tabular}{c}
Bonds \\
Purchased
\end{tabular} & \begin{tabular}{c}
Total \\
Price
\end{tabular} \\
\hline
Company 1 & 8.75\% & 102.50 & 78 days & \[tex]$ \square & \$[/tex] 3.50 & 15 & \$ \\
\hline
\end{tabular}



Answer :

Let's go through the steps to calculate the accrued interest per bond, the total accrued interest, and the total purchase price of the bonds sold by Company 1.

Step 1: Convert the coupon rate to a decimal
- Coupon Rate: 8.75%
- Convert percentage to a decimal: 8.75% = 0.0875

Step 2: Calculate the accrued interest per bond
- Use the formula for accrued interest: [tex]\( \text{Accrued Interest} = \text{Coupon Rate} \times \left( \frac{\text{Days Since Last Interest}}{360} \right) \times 100 \)[/tex]
- Plug in the given values:
[tex]\[ \text{Accrued Interest} = 0.0875 \times \left( \frac{78}{360} \right) \times 100 \][/tex]

[tex]\( \text{Accrued Interest per bond} = 1.90 \)[/tex]

Step 3: Calculate the total accrued interest for all bonds
- Multiply the accrued interest per bond by the number of bonds purchased:
[tex]\[ \text{Total Accrued Interest} = 1.90 \times 15 \][/tex]

[tex]\( \text{Total Accrued Interest} = 28.44 \)[/tex] dollars

Step 4: Calculate the total purchase price
- Add the market price and the commission per bond:
[tex]\[ \text{Cost per bond, including commission} = 102.50 + 3.50 = 106.00 \][/tex]
- Multiply this by the number of bonds purchased:
[tex]\[ \text{Total Market Price with Commission} = 106.00 \times 15 = 1590.00 \][/tex]
- Add the total accrued interest to this amount to get the total purchase price:
[tex]\[ \text{Total Purchase Price} = 1590.00 + 28.44 = 1618.44 \text{ dollars} \][/tex]

So, the final answers are:
- Accrued Interest per bond: [tex]\( \$1.90 \)[/tex]
- Total Accrued Interest: [tex]\( \$28.44 \)[/tex]
- Total Purchase Price: [tex]\( \$1618.44 \)[/tex]