To find the electric potential [tex]\( V \)[/tex] of a charge given its electric potential energy [tex]\( U \)[/tex] and the amount of charge [tex]\( Q \)[/tex], you can use the formula:
[tex]\[ V = \frac{U}{Q} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( Q \)[/tex] is the charge.
Given:
- The charge [tex]\( Q = 7.2 \times 10^{-5} \, \text{C} \)[/tex]
- The electric potential energy [tex]\( U = 1.08 \times 10^{-2} \, \text{J} \)[/tex]
Step-by-step solution:
1. Plug the given values into the formula:
[tex]\[ V = \frac{1.08 \times 10^{-2} \, \text{J}}{7.2 \times 10^{-5} \, \text{C}} \][/tex]
2. Carry out the division to find the electric potential:
[tex]\[ V = \frac{1.08 \times 10^{-2}}{7.2 \times 10^{-5}} \][/tex]
3. This calculation results in:
[tex]\[ V = 150 \, \text{V} \][/tex]
Therefore, the electric potential, to the nearest whole number, is [tex]\( \boxed{150} \, \text{V} \)[/tex].