Electrostatics Pre-Test

1. A [tex]$7.2 \times 10^{-5} C$[/tex] charge has an electric potential energy of [tex]$1.08 \times 10^{-2} J$[/tex]. The electric potential, to the nearest whole number, is [tex]\square \text{ V}[/tex].

(Note: This question should be completed within the given time of [tex][tex]$57: 46$[/tex][/tex].)



Answer :

To find the electric potential [tex]\( V \)[/tex] of a charge given its electric potential energy [tex]\( U \)[/tex] and the amount of charge [tex]\( Q \)[/tex], you can use the formula:

[tex]\[ V = \frac{U}{Q} \][/tex]

where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( Q \)[/tex] is the charge.

Given:
- The charge [tex]\( Q = 7.2 \times 10^{-5} \, \text{C} \)[/tex]
- The electric potential energy [tex]\( U = 1.08 \times 10^{-2} \, \text{J} \)[/tex]

Step-by-step solution:

1. Plug the given values into the formula:

[tex]\[ V = \frac{1.08 \times 10^{-2} \, \text{J}}{7.2 \times 10^{-5} \, \text{C}} \][/tex]

2. Carry out the division to find the electric potential:

[tex]\[ V = \frac{1.08 \times 10^{-2}}{7.2 \times 10^{-5}} \][/tex]

3. This calculation results in:

[tex]\[ V = 150 \, \text{V} \][/tex]

Therefore, the electric potential, to the nearest whole number, is [tex]\( \boxed{150} \, \text{V} \)[/tex].