Consider the following demand and cost information for a monopoly.

\begin{tabular}{|c|c|c|}
\hline
Quantity & Price & Total Cost \\
\hline
0 & [tex]$\$[/tex] 32[tex]$ & $[/tex]\[tex]$ 6$[/tex] \\
\hline
1 & [tex]$\$[/tex] 28[tex]$ & $[/tex]\[tex]$ 20$[/tex] \\
\hline
2 & [tex]$\$[/tex] 24[tex]$ & $[/tex]\[tex]$ 34$[/tex] \\
\hline
3 & [tex]$\$[/tex] 20[tex]$ & $[/tex]\[tex]$ 48$[/tex] \\
\hline
4 & [tex]$\$[/tex] 16[tex]$ & $[/tex]\[tex]$ 62$[/tex] \\
\hline
5 & [tex]$\$[/tex] 12[tex]$ & $[/tex]\[tex]$ 76$[/tex] \\
\hline
\end{tabular}

Refer to Table 15-9. What is the marginal cost of the 4th unit?

A. [tex]$\$[/tex] 4[tex]$
B. $[/tex]\[tex]$ 14$[/tex]
C. [tex]$\$[/tex] 31[tex]$
D. $[/tex]\[tex]$ 62$[/tex]



Answer :

To determine the marginal cost of the 4th unit, we need to understand the concept of marginal cost. Marginal cost is the additional cost incurred by producing one more unit of a good. It is calculated by taking the difference in total cost when production is increased by one unit.

We are given the total cost associated with different quantities in the table provided:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Quantity} & \text{Price} & \text{Total Cost} \\ \hline 0 & \$ 32 & \$ 6 \\ \hline 1 & \$ 28 & \$ 20 \\ \hline 2 & \$ 24 & \$ 34 \\ \hline 3 & \$ 20 & \$ 48 \\ \hline 4 & \$ 16 & \$ 62 \\ \hline 5 & \$ 12 & \$ 76 \\ \hline \end{array} \][/tex]

To find the marginal cost of producing the 4th unit, we must calculate the change in total cost when we move from producing 3 units to producing 4 units:
[tex]\[ \text{Marginal Cost} = \text{Total Cost at 4 units} - \text{Total Cost at 3 units} \][/tex]

From the table:
[tex]\[ \text{Total Cost at 4 units} = \$ 62 \][/tex]
[tex]\[ \text{Total Cost at 3 units} = \$ 48 \][/tex]

Calculating the difference:
[tex]\[ \text{Marginal Cost} = \$ 62 - \$ 48 = \$ 14 \][/tex]

Therefore, the marginal cost of the 4th unit is [tex]\( \$ 14 \)[/tex].

So, the correct answer is:
[tex]\[ \$ 14 \][/tex]