Answer :
To determine the marginal cost of the 4th unit, we need to understand the concept of marginal cost. Marginal cost is the additional cost incurred by producing one more unit of a good. It is calculated by taking the difference in total cost when production is increased by one unit.
We are given the total cost associated with different quantities in the table provided:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Quantity} & \text{Price} & \text{Total Cost} \\ \hline 0 & \$ 32 & \$ 6 \\ \hline 1 & \$ 28 & \$ 20 \\ \hline 2 & \$ 24 & \$ 34 \\ \hline 3 & \$ 20 & \$ 48 \\ \hline 4 & \$ 16 & \$ 62 \\ \hline 5 & \$ 12 & \$ 76 \\ \hline \end{array} \][/tex]
To find the marginal cost of producing the 4th unit, we must calculate the change in total cost when we move from producing 3 units to producing 4 units:
[tex]\[ \text{Marginal Cost} = \text{Total Cost at 4 units} - \text{Total Cost at 3 units} \][/tex]
From the table:
[tex]\[ \text{Total Cost at 4 units} = \$ 62 \][/tex]
[tex]\[ \text{Total Cost at 3 units} = \$ 48 \][/tex]
Calculating the difference:
[tex]\[ \text{Marginal Cost} = \$ 62 - \$ 48 = \$ 14 \][/tex]
Therefore, the marginal cost of the 4th unit is [tex]\( \$ 14 \)[/tex].
So, the correct answer is:
[tex]\[ \$ 14 \][/tex]
We are given the total cost associated with different quantities in the table provided:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Quantity} & \text{Price} & \text{Total Cost} \\ \hline 0 & \$ 32 & \$ 6 \\ \hline 1 & \$ 28 & \$ 20 \\ \hline 2 & \$ 24 & \$ 34 \\ \hline 3 & \$ 20 & \$ 48 \\ \hline 4 & \$ 16 & \$ 62 \\ \hline 5 & \$ 12 & \$ 76 \\ \hline \end{array} \][/tex]
To find the marginal cost of producing the 4th unit, we must calculate the change in total cost when we move from producing 3 units to producing 4 units:
[tex]\[ \text{Marginal Cost} = \text{Total Cost at 4 units} - \text{Total Cost at 3 units} \][/tex]
From the table:
[tex]\[ \text{Total Cost at 4 units} = \$ 62 \][/tex]
[tex]\[ \text{Total Cost at 3 units} = \$ 48 \][/tex]
Calculating the difference:
[tex]\[ \text{Marginal Cost} = \$ 62 - \$ 48 = \$ 14 \][/tex]
Therefore, the marginal cost of the 4th unit is [tex]\( \$ 14 \)[/tex].
So, the correct answer is:
[tex]\[ \$ 14 \][/tex]