Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex]$(1-3 a x) \cdot(1+3 a x$[/tex]
-----

Response:
Simplify the following expression:
[tex]\[ (1 - 3ax) \cdot (1 + 3ax) \][/tex]



Answer :

Sure, let's expand the expression [tex]\((1 - 3ax)(1 + 3ax)\)[/tex].

1. First, apply the distributive property (also known as FOIL in binomials):
[tex]\[ (1 - 3ax)(1 + 3ax) = 1 \cdot 1 + 1 \cdot (3ax) + (-3ax) \cdot 1 + (-3ax) \cdot (3ax) \][/tex]

2. Now, multiply each pair of terms:
[tex]\[ 1 \cdot 1 = 1 \][/tex]
[tex]\[ 1 \cdot (3ax) = 3ax \][/tex]
[tex]\[ (-3ax) \cdot 1 = -3ax \][/tex]
[tex]\[ (-3ax) \cdot (3ax) = -9a^2x^2 \][/tex]

3. Combine all the terms:
[tex]\[ 1 + 3ax - 3ax - 9a^2x^2 \][/tex]

4. Notice that the middle terms [tex]\(3ax\)[/tex] and [tex]\(-3ax\)[/tex] cancel each other out:
[tex]\[ 1 - 9a^2x^2 \][/tex]

Therefore, the expanded form of [tex]\((1 - 3ax)(1 + 3ax)\)[/tex] is:
[tex]\[ 1 - 9a^2x^2 \][/tex]

Thus, the final expression is:
[tex]\[ -9a^2x^2 + 1 \][/tex]