Answer :
Let's break down the given question step-by-step to find the answers.
### Step 1: Value of Exported Fish
The trader exports 500 fish. To determine the value of the exported fish in British pounds, we need to know the value of one fish in terms of British pounds. We are given that 5 clams are worth 1 British pound.
If each fish is traded for clams and we know that he receives 10,000 clams:
- [tex]\( \text{Number of fish traded} = 500 \)[/tex]
- [tex]\( \text{Value of 1 pound of clams} = 5 \text{ clams} \)[/tex]
To find the value of fish traded in British pounds:
[tex]\[ \text{Value of exported fish} = 500 \text{ fish} \times \left(\frac{5 \text{ clams}}{1 \text{ fish}}\right) \][/tex]
[tex]\[ = 500 \times 5 \][/tex]
[tex]\[ = 2500 \text{ British pounds} \][/tex]
### Step 2: Value of Imported Clams
The trader receives 10,000 clams. To determine the value of these clams in British pounds:
[tex]\[ \text{Value of imported clams} = \frac{10,000 \text{ clams}}{5 \text{ clams per pound}} \][/tex]
[tex]\[ = \frac{10,000}{5} \][/tex]
[tex]\[ = 2000 \text{ British pounds} \][/tex]
### Summary of Values
- Value of exported fish: [tex]\( 2500 \)[/tex] British pounds
- Value of imported clams: [tex]\( 2000 \)[/tex] British pounds
Now let's fill in the boxes as required:
1. Value of exported fish: [tex]\( 2500 \)[/tex] British pounds
2. Value of imported clams: [tex]\( 2000 \)[/tex] British pounds
Next, given that [tex]\( C = 0 \)[/tex], we have:
- [tex]\( C = £ \square \)[/tex]
- [tex]\( I = £ \square \)[/tex]
- [tex]\( N X = £ \square \)[/tex]
- GDP [tex]\( Y \)[/tex] = £ \square
Finally, if [tex]\( NX \)[/tex] (Net Exports) is given by the difference between the value of exports and the value of imports:
[tex]\[ NX = \text{Value of exported fish} - \text{Value of imported clams} \][/tex]
[tex]\[ = 2500 - 2000 \][/tex]
[tex]\[ = 500 \text{ British pounds} \][/tex]
Without further data for [tex]\( C \)[/tex], [tex]\( I \)[/tex], and assuming they are [tex]\( 0 \)[/tex]:
- [tex]\( C = \)[/tex] £
- [tex]\( I = \)[/tex] £
- [tex]\( NX = 500 \text{ British pounds} \)[/tex]
- GDP [tex]\( Y \)[/tex] can be calculated if we know that [tex]\( Y = C + I + NX \)[/tex].
- Given no further values:
- [tex]\( GDP ( Y ) = 0 + 0 + 500 = 500 \)[/tex]
Thus:
- GDP (Y) = £500
### Final answers for the blanks:
1. Value of exported fish: £ [tex]\( 2500 \)[/tex]
2. Value of imported clams: £ [tex]\( 2000 \)[/tex]
3. C: £0
4. I: £0
5. NX: £500
6. GDP (Y): £500
### Step 1: Value of Exported Fish
The trader exports 500 fish. To determine the value of the exported fish in British pounds, we need to know the value of one fish in terms of British pounds. We are given that 5 clams are worth 1 British pound.
If each fish is traded for clams and we know that he receives 10,000 clams:
- [tex]\( \text{Number of fish traded} = 500 \)[/tex]
- [tex]\( \text{Value of 1 pound of clams} = 5 \text{ clams} \)[/tex]
To find the value of fish traded in British pounds:
[tex]\[ \text{Value of exported fish} = 500 \text{ fish} \times \left(\frac{5 \text{ clams}}{1 \text{ fish}}\right) \][/tex]
[tex]\[ = 500 \times 5 \][/tex]
[tex]\[ = 2500 \text{ British pounds} \][/tex]
### Step 2: Value of Imported Clams
The trader receives 10,000 clams. To determine the value of these clams in British pounds:
[tex]\[ \text{Value of imported clams} = \frac{10,000 \text{ clams}}{5 \text{ clams per pound}} \][/tex]
[tex]\[ = \frac{10,000}{5} \][/tex]
[tex]\[ = 2000 \text{ British pounds} \][/tex]
### Summary of Values
- Value of exported fish: [tex]\( 2500 \)[/tex] British pounds
- Value of imported clams: [tex]\( 2000 \)[/tex] British pounds
Now let's fill in the boxes as required:
1. Value of exported fish: [tex]\( 2500 \)[/tex] British pounds
2. Value of imported clams: [tex]\( 2000 \)[/tex] British pounds
Next, given that [tex]\( C = 0 \)[/tex], we have:
- [tex]\( C = £ \square \)[/tex]
- [tex]\( I = £ \square \)[/tex]
- [tex]\( N X = £ \square \)[/tex]
- GDP [tex]\( Y \)[/tex] = £ \square
Finally, if [tex]\( NX \)[/tex] (Net Exports) is given by the difference between the value of exports and the value of imports:
[tex]\[ NX = \text{Value of exported fish} - \text{Value of imported clams} \][/tex]
[tex]\[ = 2500 - 2000 \][/tex]
[tex]\[ = 500 \text{ British pounds} \][/tex]
Without further data for [tex]\( C \)[/tex], [tex]\( I \)[/tex], and assuming they are [tex]\( 0 \)[/tex]:
- [tex]\( C = \)[/tex] £
- [tex]\( I = \)[/tex] £
- [tex]\( NX = 500 \text{ British pounds} \)[/tex]
- GDP [tex]\( Y \)[/tex] can be calculated if we know that [tex]\( Y = C + I + NX \)[/tex].
- Given no further values:
- [tex]\( GDP ( Y ) = 0 + 0 + 500 = 500 \)[/tex]
Thus:
- GDP (Y) = £500
### Final answers for the blanks:
1. Value of exported fish: £ [tex]\( 2500 \)[/tex]
2. Value of imported clams: £ [tex]\( 2000 \)[/tex]
3. C: £0
4. I: £0
5. NX: £500
6. GDP (Y): £500