The ordered pairs in the table below represent a linear function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
6 & 2 \\
\hline
9 & 8 \\
\hline
\end{tabular}

What is the slope of the function?

A. [tex]$\frac{1}{4}$[/tex]

B. [tex]$\frac{1}{2}$[/tex]

C. 2

D. 4



Answer :

To find the slope of the linear function given the ordered pairs, we use the slope formula. The slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated as follows:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, the given points are:
[tex]\[ (x_1, y_1) = (6, 2) \][/tex]
[tex]\[ (x_2, y_2) = (9, 8) \][/tex]

Substitute these values into the slope formula:

[tex]\[ m = \frac{8 - 2}{9 - 6} \][/tex]

First, calculate the differences in the numerator and the denominator:

[tex]\[ 8 - 2 = 6 \][/tex]
[tex]\[ 9 - 6 = 3 \][/tex]

Now, divide the numerator by the denominator:

[tex]\[ m = \frac{6}{3} = 2 \][/tex]

Therefore, the slope of the function is [tex]\( 2 \)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{2} \][/tex]