To find the slope of the linear function given the ordered pairs, we use the slope formula. The slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated as follows:
[tex]\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\][/tex]
Here, the given points are:
[tex]\[
(x_1, y_1) = (6, 2)
\][/tex]
[tex]\[
(x_2, y_2) = (9, 8)
\][/tex]
Substitute these values into the slope formula:
[tex]\[
m = \frac{8 - 2}{9 - 6}
\][/tex]
First, calculate the differences in the numerator and the denominator:
[tex]\[
8 - 2 = 6
\][/tex]
[tex]\[
9 - 6 = 3
\][/tex]
Now, divide the numerator by the denominator:
[tex]\[
m = \frac{6}{3} = 2
\][/tex]
Therefore, the slope of the function is [tex]\( 2 \)[/tex].
Hence, the correct answer is:
[tex]\[
\boxed{2}
\][/tex]