Simplify the expression:
[tex]\[ \left(2x^2 y^3 + 12xy^2\right) \cdot \left(-12xy + 4y^2 - 14x^3 y\right) \][/tex]



Answer :

To solve the given expression [tex]\((2x^2 y^3 + 12x y^2) \cdot (-12xy + 4y^2 - 14x^3 y)\)[/tex], we need to expand and simplify it. Let's proceed step by step.

Step 1: Distribute each term of the first polynomial by each term of the second polynomial.

Given the expression:

[tex]\[ (2x^2 y^3 + 12x y^2) \cdot (-12xy + 4y^2 - 14x^3 y) \][/tex]

We need to distribute the two terms from the first polynomial across each of the three terms in the second polynomial.

Let's start with [tex]\(2x^2 y^3 \)[/tex]:

[tex]\[ 2x^2 y^3 \cdot (-12xy) + 2x^2 y^3 \cdot 4y^2 + 2x^2 y^3 \cdot (-14x^3 y) \][/tex]

Now separately:

1. [tex]\( 2x^2 y^3 \cdot (-12xy) \)[/tex]:
[tex]\[ 2x^2 y^3 \cdot -12xy = 2 \cdot (-12) \cdot x^2 \cdot x \cdot y^3 \cdot y = -24x^3 y^4 \][/tex]

2. [tex]\( 2x^2 y^3 \cdot 4y^2 \)[/tex]:
[tex]\[ 2x^2 y^3 \cdot 4y^2 = 2 \cdot 4 \cdot x^2 \cdot y^3 \cdot y^2 = 8x^2 y^5 \][/tex]

3. [tex]\( 2x^2 y^3 \cdot (-14x^3 y) \)[/tex]:
[tex]\[ 2x^2 y^3 \cdot -14x^3 y = 2 \cdot (-14) \cdot x^2 \cdot x^3 \cdot y^3 \cdot y = -28x^5 y^4 \][/tex]

Now, let's proceed with [tex]\(12xy^2\)[/tex]:

[tex]\[ 12x y^2 \cdot (-12xy) + 12x y^2 \cdot 4y^2 + 12x y^2 \cdot (-14x^3 y) \][/tex]

Separately:

1. [tex]\( 12x y^2 \cdot (-12xy) \)[/tex]:
[tex]\[ 12x y^2 \cdot -12xy = 12 \cdot (-12) \cdot x \cdot x \cdot y^2 \cdot y = -144x^2 y^3 \][/tex]

2. [tex]\( 12x y^2 \cdot 4y^2 \)[/tex]:
[tex]\[ 12x y^2 \cdot 4y^2 = 12 \cdot 4 \cdot x \cdot y^2 \cdot y^2 = 48x y^4 \][/tex]

3. [tex]\( 12x y^2 \cdot (-14x^3 y) \)[/tex]:
[tex]\[ 12x y^2 \cdot -14x^3 y = 12 \cdot (-14) \cdot x \cdot x^3 \cdot y^2 \cdot y = -168x^4 y^3 \][/tex]

Step 2: Combine all the terms.

Now, we combine all the resulting terms:

[tex]\[ -24x^3 y^4 + 8x^2 y^5 - 28x^5 y^4 - 144x^2 y^3 + 48x y^4 - 168x^4 y^3 \][/tex]

We rearrange and sort these terms:

[tex]\[ -28x^5 y^4 - 168x^4 y^3 - 24x^3 y^4 + 8x^2 y^5 - 144x^2 y^3 + 48x y^4 \][/tex]

This is the expanded and simplified form of the given expression.