Question 3 of 5

Select the correct answer. Consider functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex].

[tex]\[
\begin{array}{l}
f(x)=\sqrt{x^2+24x+144} \\
g(x)=x^3-216
\end{array}
\][/tex]

Which expression is equal to [tex]\( f(x)+g(x) \)[/tex]?

A. [tex]\( x^3 + x^2 + 24x - 72 \)[/tex]

B. [tex]\( x^3 + x - 204 \)[/tex]

C. [tex]\( x^4 - 204 \)[/tex]

D. [tex]\( x^3 + x - 228 \)[/tex]

Submit



Answer :

Let's begin by examining the given functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:

[tex]\[ f(x) = \sqrt{x^2 + 24x + 144} \][/tex]

First, we will simplify the expression inside the square root:

[tex]\[ x^2 + 24x + 144 \][/tex]

Notice that this is a perfect square trinomial:

[tex]\[ x^2 + 24x + 144 = (x + 12)^2 \][/tex]

Therefore,

[tex]\[ f(x) = \sqrt{(x + 12)^2} \][/tex]

Since the square root of a square is the absolute value,

[tex]\[ f(x) = |x + 12| \][/tex]

For simplicity in this context, we'll assume [tex]\( x \geq -12 \)[/tex]. Hence,

[tex]\[ f(x) = x + 12 \][/tex]

Now, consider the function [tex]\( g(x) \)[/tex]:

[tex]\[ g(x) = x^3 - 216 \][/tex]

To find [tex]\( f(x) + g(x) \)[/tex], we simply add [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:

[tex]\[ f(x) + g(x) = (x + 12) + (x^3 - 216) \][/tex]

Combine the terms to get:

[tex]\[ f(x) + g(x) = x^3 + x + 12 - 216 \][/tex]

[tex]\[ f(x) + g(x) = x^3 + x - 204 \][/tex]

Hence, the expression equal to [tex]\( f(x) + g(x) \)[/tex] is:

[tex]\[ \boxed{x^3 + x - 204} \][/tex]