What is the exact value of [tex]$\csc \left(\frac{14 \pi}{3}\right)$[/tex]?

A. [tex]-2[/tex]
B. [tex]\frac{\sqrt{3}}{2}[/tex]
C. [tex]\frac{2 \sqrt{3}}{3}[/tex]
D. [tex]-\frac{1}{2}[/tex]



Answer :

To find the exact value of [tex]\(\csc\left(\frac{14\pi}{3}\right)\)[/tex], let's go through the steps:

1. Simplify the Angle:
First, we need to simplify the angle [tex]\(\frac{14\pi}{3}\)[/tex]. We do this by reducing it modulo [tex]\(2\pi\)[/tex], as the cosecant function [tex]\(\csc(\theta)\)[/tex] is periodic with a period of [tex]\(2\pi\)[/tex].

[tex]\[ \frac{14\pi}{3} \quad \text{modulo} \quad 2\pi \][/tex]

[tex]\[ 2\pi = \frac{6\pi}{3} \][/tex]

Now,

[tex]\[ \frac{14\pi}{3} = 4 \cdot \frac{2\pi}{3} + \frac{2\pi}{3} \][/tex]

By subtracting integer multiples of [tex]\(2\pi\)[/tex] from [tex]\(\frac{14\pi}{3}\)[/tex], we find that:

[tex]\[ \frac{14\pi}{3} \equiv \frac{14\pi}{3} - 4 \cdot 2\pi = \frac{14\pi}{3} - \frac{24\pi}{3} = \frac{14\pi - 24\pi}{3} = -\frac{10\pi}{3} \][/tex]

Since [tex]\(-\frac{10\pi}{3}\)[/tex] is not within the first [tex]\(2\pi\)[/tex] interval, we can equivalently write the simplified angle as:

[tex]\[ 14\pi/3 \equiv 2\pi/3 \quad (\text{mod } 2\pi) \][/tex]

2. Determine [tex]\(\csc(\theta)\)[/tex]:

Next, let's find [tex]\(\csc(\frac{2\pi}{3})\)[/tex]. Recall that:

[tex]\[ \csc(\theta) = \frac{1}{\sin(\theta)} \][/tex]

Now, evaluate [tex]\(\sin(\frac{2\pi}{3})\)[/tex]:

[tex]\(\frac{2\pi}{3}\)[/tex] points to an angle in the second quadrant, where sine is positive. The reference angle in this case is [tex]\(\pi - \frac{2\pi}{3} = \frac{\pi}{3}\)[/tex].

[tex]\[ \sin\left(\frac{2\pi}{3}\right) = \sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]

Therefore:

[tex]\[ \csc\left(\frac{2\pi}{3}\right) = \frac{1}{\sin\left(\frac{2\pi}{3}\right)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} \][/tex]

Hence, the exact value of [tex]\(\csc\left(\frac{14\pi}{3}\right)\)[/tex] is:

[tex]\[ \frac{2\sqrt{3}}{3} \][/tex]

Thus, the correct answer is:

[tex]\[ \boxed{\frac{2\sqrt{3}}{3}} \][/tex]