The length of one leg of a right triangle is 3, and the hypotenuse is [tex]\sqrt{34}[/tex]. What is the length of the other leg?

A. 8
B. 34
C. 5
D. [tex]\sqrt{43}[/tex]



Answer :

We are given a right triangle with one leg and the hypotenuse. Our task is to find the length of the other leg.

Given:
- One leg ([tex]\( a \)[/tex]) = 3
- Hypotenuse ([tex]\( c \)[/tex]) = [tex]\( \sqrt{34} \)[/tex]

We will use the Pythagorean theorem to find the other leg ([tex]\( b \)[/tex]). According to the Pythagorean theorem:

[tex]\[ a^2 + b^2 = c^2 \][/tex]

Substitute the known values into the equation:

[tex]\[ 3^2 + b^2 = (\sqrt{34})^2 \][/tex]

Simplify the equation:

[tex]\[ 9 + b^2 = 34 \][/tex]

To solve for [tex]\( b^2 \)[/tex], subtract 9 from both sides:

[tex]\[ b^2 = 34 - 9 \][/tex]
[tex]\[ b^2 = 25 \][/tex]

Now, take the square root of both sides to solve for [tex]\( b \)[/tex]:

[tex]\[ b = \sqrt{25} \][/tex]
[tex]\[ b = 5 \][/tex]

Therefore, the length of the other leg is 5.

Now, let's identify the correct answer from the given options:
A. 8
B. 34
C. 5
D. [tex]\( \sqrt{43} \)[/tex]

The correct option is C. 5.