Solve the system of equations:

[tex]\[
\begin{array}{l}
y = 3x + 17 \\
y = -2x^2 - 12x - 16
\end{array}
\][/tex]

Round to the nearest hundredth. If there is more than one solution, use the "or" button. If applicable, click on "No solution."

[tex]\[
(x, y) = (\square, \square)
\][/tex]
[tex]$\square$[/tex] or [tex]$\square$[/tex] [tex]$\square$[/tex] No solution



Answer :

To find the points of intersection between the two equations, we first set them equal to each other and solve for [tex]\( x \)[/tex]:

[tex]\[ y = 3x + 17 \][/tex]
[tex]\[ y = -2x^2 - 12x - 16 \][/tex]

Set the right-hand sides equal to each other:

[tex]\[ 3x + 17 = -2x^2 - 12x - 16 \][/tex]

Rearrange the equation to set it to zero:

[tex]\[ 2x^2 + 12x + 3x + 16 + 17 = 0 \][/tex]
[tex]\[ 2x^2 + 15x + 33 = 0 \][/tex]

Next, we solve this quadratic equation using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

where [tex]\( a = 2 \)[/tex], [tex]\( b = 15 \)[/tex], and [tex]\( c = 33 \)[/tex].

First, compute the discriminant:

[tex]\[ \Delta = b^2 - 4ac = 15^2 - 4(2)(33) \][/tex]
[tex]\[ \Delta = 225 - 264 \][/tex]
[tex]\[ \Delta = -39 \][/tex]

Since the discriminant is negative, there are no real solutions to the equation. This means that the curves do not intersect at any real points.

Therefore, the answer is:

[tex]\[ (x, y) = \text{No solution} \][/tex]