\begin{tabular}{l|rrrrrrr}
x & 57 & 53 & 59 & 61 & 53 & 56 & 60 \\
\hline y & 156 & 164 & 163 & 177 & 159 & 175 & 151
\end{tabular}

Choose the correct correlation coefficient:

A. 0.109
B. [tex]$-0.054$[/tex]
C. 0.214
D. [tex]$-0.078$[/tex]



Answer :

Sure, let's analyze the given data step-by-step to understand how we arrived at the final result.

Given data:

[tex]\[ \begin{array}{l|rrrrrrr} x & 57 & 53 & 59 & 61 & 53 & 56 & 60 \\ \hline y & 156 & 164 & 163 & 177 & 159 & 175 & 151 \end{array} \][/tex]

Step 1: Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]

The mean of [tex]\( x \)[/tex]:

[tex]\[ \bar{x} = \frac{\sum_{i=1}^n x_i}{n} = \frac{57 + 53 + 59 + 61 + 53 + 56 + 60}{7} = 57.0 \][/tex]

The mean of [tex]\( y \)[/tex]:

[tex]\[ \bar{y} = \frac{\sum_{i=1}^n y_i}{n} = \frac{156 + 164 + 163 + 177 + 159 + 175 + 151}{7} \approx 163.57 \][/tex]

Step 2: Calculate the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]

The covariance formula is:

[tex]\[ \text{cov}(x, y) = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n-1} \][/tex]

After calculating, we find:

[tex]\[ \text{cov}(x, y) \approx 3.33 \][/tex]

Step 3: Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]

The standard deviation of [tex]\( x \)[/tex]:

[tex]\[ \sigma_x = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}} \approx 3.21 \][/tex]

The standard deviation of [tex]\( y \)[/tex]:

[tex]\[ \sigma_y = \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}} \approx 9.55 \][/tex]

Step 4: Calculate the Pearson correlation coefficient

The Pearson correlation coefficient [tex]\( r \)[/tex] is given by:

[tex]\[ r = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \][/tex]

Using the covariance and standard deviations calculated:

[tex]\[ r \approx \frac{3.33}{3.21 \times 9.55} \approx 0.109 \][/tex]

Thus, the Pearson correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is approximately [tex]\( 0.109 \)[/tex].

Conclusion

The Pearson correlation coefficient of 0.109 indicates a very weak positive linear relationship between the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex].