Answer :
Let's break down the problem step-by-step to determine the approximate cost of Joshua's driving trip.
1. Total Distance of the Trip:
Joshua is planning to drive a total distance of 1020 miles.
2. Average Miles per Gallon (mpg):
His car has an average fuel efficiency of 30 miles per gallon.
3. Cost of Gas per Gallon:
The cost of gas is $4.06 per gallon.
Step 1: Calculate the Total Gallons of Gas Needed for the Trip
To find out how many gallons of gas Joshua will need, we use the formula:
[tex]\[ \text{Total Gallons} = \frac{\text{Total Distance}}{\text{Average Miles per Gallon}} \][/tex]
Plugging in the given values:
[tex]\[ \text{Total Gallons} = \frac{1020 \text{ miles}}{30 \text{ miles per gallon}} = 34 \text{ gallons} \][/tex]
Step 2: Calculate the Total Cost of the Trip
Next, we find out how much the gas will cost by using the formula:
[tex]\[ \text{Total Cost} = \text{Total Gallons} \times \text{Cost per Gallon} \][/tex]
Using the values we have:
[tex]\[ \text{Total Cost} = 34 \text{ gallons} \times 4.06 \text{ dollars per gallon} \approx 138.04 \text{ dollars} \][/tex]
Thus, the approximate driving cost of the trip is:
[tex]\[ \boxed{138.04 \text{ dollars}} \][/tex]
1. Total Distance of the Trip:
Joshua is planning to drive a total distance of 1020 miles.
2. Average Miles per Gallon (mpg):
His car has an average fuel efficiency of 30 miles per gallon.
3. Cost of Gas per Gallon:
The cost of gas is $4.06 per gallon.
Step 1: Calculate the Total Gallons of Gas Needed for the Trip
To find out how many gallons of gas Joshua will need, we use the formula:
[tex]\[ \text{Total Gallons} = \frac{\text{Total Distance}}{\text{Average Miles per Gallon}} \][/tex]
Plugging in the given values:
[tex]\[ \text{Total Gallons} = \frac{1020 \text{ miles}}{30 \text{ miles per gallon}} = 34 \text{ gallons} \][/tex]
Step 2: Calculate the Total Cost of the Trip
Next, we find out how much the gas will cost by using the formula:
[tex]\[ \text{Total Cost} = \text{Total Gallons} \times \text{Cost per Gallon} \][/tex]
Using the values we have:
[tex]\[ \text{Total Cost} = 34 \text{ gallons} \times 4.06 \text{ dollars per gallon} \approx 138.04 \text{ dollars} \][/tex]
Thus, the approximate driving cost of the trip is:
[tex]\[ \boxed{138.04 \text{ dollars}} \][/tex]