A 19-year-old female buys [tex]$50/100/50$[/tex] liability insurance, collision insurance with a [tex]$\$[/tex]500[tex]$ deductible, and comprehensive insurance with a $[/tex]\[tex]$250$[/tex] deductible.

What is her total annual premium?

Liability Insurance

\begin{tabular}{|c|c|c|}
\hline Type & Amount & Premium \\
\hline Bodily Injury & 25/50 & \[tex]$220 \\
& 50/100 & \$[/tex]310 \\
& 100/300 & \[tex]$450 \\
\hline Property Damage & 25 & \$[/tex]175 \\
& 50 & \[tex]$245 \\
& 100 & \$[/tex]375 \\
\hline
\end{tabular}

Collision and Comprehensive Premiums

\begin{tabular}{|c|c|c|}
\hline Deductible & Collision & Comprehensive \\
\hline \[tex]$100 & \$[/tex]215 & \[tex]$129 \\
\hline \$[/tex]250 & \[tex]$185 & \$[/tex]102 \\
\hline \[tex]$500 & \$[/tex]148 & \$85 \\
\hline
\end{tabular}

Rating Factor

\begin{tabular}{|c|c|c|}
\hline Age & Male & Female \\
\hline 17-20 & 30 & 145 \\
\hline 21-24 & 215 & 12 \\
\hline 25-29 & 155 & 10 \\
\hline
\end{tabular}

Calculate the total annual premium for her insurance.



Answer :

To determine the total annual premium for a 19-year-old female purchasing insurance, let's follow these steps:

1. Identify the premiums for each type of insurance:
- Bodily Injury Liability for [tex]\( \$50 / 100 \)[/tex] is [tex]\( \$310 \)[/tex].
- Property Damage Liability for [tex]\( \$50 \)[/tex] is [tex]\( \$245 \)[/tex].
- Collision Insurance with a [tex]\( \$500 \)[/tex] deductible is [tex]\( \$148 \)[/tex].
- Comprehensive Insurance with a [tex]\( \$250 \)[/tex] deductible is [tex]\( \$85 \)[/tex].

2. Calculate the total annual premium by summing all the individual premiums:
[tex]\[ \text{Total Annual Premium} = \text{Bodily Injury Premium} + \text{Property Damage Premium} + \text{Collision Premium} + \text{Comprehensive Premium} \][/tex]
Substituting the given values:
[tex]\[ \text{Total Annual Premium} = 310 + 245 + 148 + 85 = 788 \][/tex]

3. Consider the rating factor for a 19-year-old female, which is 145.

4. Adjust the total annual premium by the rating factor:
[tex]\[ \text{Total Annual Premium Adjusted} = \text{Total Annual Premium} \times \left( \frac{\text{Rating Factor}}{100} \right) \][/tex]
Substituting the values:
[tex]\[ \text{Total Annual Premium Adjusted} = 788 \times \left( \frac{145}{100} \right) = 788 \times 1.45 = 1142.6 \][/tex]

So, the total annual premium for a 19-year-old female will be [tex]\( \$1142.60 \)[/tex]. Consequently, her base total annual premium without adjusting for the rating factor was [tex]\( \$788 \)[/tex].